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Zusammenfassung

Die Forschungsrichtung der Schwarmrobotik stellt Ingenieure vor die Auf-
gabe, die Organisationsstruktur ihres mechanischen Schwarms festzulegen.
Eine der wichtigsten Entscheidungen ist dabei, welcher Roboter welcher
Aufgabe nachgehen sollte, um eine vorliegende Mission zu erfüllen. Das
zugehörige Optimierungsproblem nennt sich Task Allocation (Aufgabenzu-
weisung) und kann mit verschiedenen Mechanismen in Angriff genommen
werden, beispielsweise mit auktionsbasierten Ansätzen, die auf Ergebnissen
der Spieltheorie beruhen.

Diese Arbeit gibt einen Überblick über Mechanismen zur Aufgabenzuwei-
sung in der Schwarmrobotik. Zu diesem Zweck wird ein neues Klassifizie-
rungsschema vorgestellt, das Lösungsstrategien in die Kategorien Heterono-
mous Task Allocation (fremdbestimmte Aufgabenzuweisung), Autonomous
Task Allocation (selbstbestimmte Aufgabenzuweisung) und Hybrid Task Al-
location (hybride Aufgabenzuweisung) einteilt.

Der experimentelle Teil dieser Arbeit nutzt diese Systematik, um Lösungs-
ansätze für ein konkretes Szenario zu entwickeln, das sich an die Natur
anlehnt: Ähnlich einem Bienenschwarm sind mehrere Roboter einem Nest
zugeordnet, das als Sammelstelle für Futter genutzt wird. Neben der Fut-
tersuche hat der künstliche Schwarm die Aufgabe, das Nest nahe einer opti-
malen Temperatur zu halten. Andernfalls kann das gesammelte Futter nicht
in Energie umgesetzt werden.

Diese Arbeit fokussiert sich auf einen wahrscheinlichkeits- beziehungswei-
se motivationsbasierten Ansatz sowie verschiedene Varianten von zentralem
und dezentralem Reinforcement Learning, eine Form des maschinellen Ler-
nens, bei der die Selektion von Aktionen durch Belohnungen bekräftigt wird.
Zum Vergleich der verschiedenen Lösungsstrategien werden entsprechende
Schwärme in statischen und dynamischen Umgebungen simuliert. Statisch
bedeutet in diesem Fall, dass sich die Außentemperatur und das Futterauf-
kommen nicht ändern.

Zur Durchführung der Experimente wurde der Swarmulator entwickelt, ei-
ne Simulationsplattform, die zum Testen von Zuweisungsalgorithmen in der
Schwarmrobotik besonders geeignet ist. Als Features bietet der Swarmulator
ein modulares Design sowie Stapelverarbeitung von Simulationen. Statisti-
sche Daten werden dabei tabellarisch gespeichert und dienen als Grundlage
für die abschließende Analyse der vorgestellten Lösungsansätze.
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Abstract

In the research field of Swarm Robotics, engineers have to decide how to
organize their robotic swarm. In this context, one of the most important
decisions is which robot should execute which task in order to achieve a
given global mission. The corresponding optimization problem is called
Task Allocation and can be tackled by various mechanisms, e.g. auctions,
which are based on research in game theory.

This thesis gives an overview of mechanisms for Task Allocation in Swarm
Robotics. For this purpose, a new taxonomy is proposed that divides solu-
tion strategies into Heteronomous Task Allocation, Autonomous Task Allo-
cation and Hybrid Task Allocation.

The experimental part of this thesis uses this system to develop solution
methods for a concrete mission that is inspired by nature: similar to a swarm
of bees, multiple robots are attached to a nest that is used to deposit food.
Besides foraging, the artificial swarm needs to keep the nest’s temperature
close to an optimal value. Otherwise gathered food cannot be processed to
energy.

This thesis focuses on one probabilistic, motivation-based approach and
variants of centralized and decentralized reinforcement learning, which is a
kind of machine learning that emphasizes the selection of actions under the
observation of rewards. For comparison of the approaches, corresponding
swarms are simulated in static and dynamic environments. In this context,
static means that the aerial temperature and the food density are fixed.

For the execution of these experiments, the Swarmulator was developed,
a simulation platform that is well suited for testing mechanisms for Task
Allocation in Swarm Robotics. The Swarmulator features a modular design
and batch processing. Statistical data is saved in tabular form and serves
as a basis for the concluding analysis of the proposed solution methods.
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Chapter 1

Introduction

Since the middle of the 20th century, robots are used to help humans in industrial
fabrication. These robotic agents are generally optimized to accomplish a local task
precisely and accurately, like welding two pieces of metal. Up until today, the applica-
tion range of robots has expanded very much. Mechanical agents can be specialized in
a way that supports humans in nearly all areas of life.

There is a desire to increase the artificial intelligence of robots, often driven by the
wish to make them more human-like. This leads to the development of increasingly
complex single robots that may even look like humans. The disadvantage in construct-
ing multi-functional single robots is obvious: a complex and capable machine is very
expensive, and failure of the individual robot is an absolute catastrophe. To prevent
such a single point of failure and to limit costs, multiple simpler robots could be de-
ployed. These robots are equipped with less abilities but are able to cooperate in order
to achieve a given complex mission that an individual robot is unable to fulfill on its
own.

The research field of Swarm Robotics is mainly inspired by the observation of social
insects. Swarms in nature show efficient behavior although their individual members are
comparably incapable. This observed swarm intelligence motivates researchers to design
robotic systems that use a swarm of physical robots to accomplish complex missions
in cooperation. Because such missions are composed of several tasks, one of the most
important challenges in Swarm Robotics is to define which robot should execute which
task under which circumstances. The corresponding optimization problem is called
Task Allocation and can be faced by various mechanisms.

1.1 Motivation

Robotic swarms offer great potential. The deployment of a multiplicity of robots does
not only improve robustness by redundancy, it may also improve efficiency by parallel
and coordinated execution of tasks. Ideally, the swarm’s members cooperate in order
to fulfill the given mission as best as possible.

For example: assume a swarm of robots that should explore the unknown environ-
ment of Mars. Of course, this mission could also be achieved by a single rover but a
collective of robots is able to cover the area much faster. In order to be efficient, the
robots need to coordinate their movement. Otherwise, target points are visited more
often than necessary or processed in an inefficient order. This coordination has to be
achieved by some kind of mechanism that solves the problem of Task Allocation.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Artificial bee. Image is taken from [SWSW12].

Robotic swarms can be used in a wide variety of missions, including warehouse
management [Dia04], mine countermeasure [Sar07], fire fighting [NGTR08, PCdDB10]
and search & rescue [MFG+02].

Mechanical swarms could even take over tasks that would normally be achieved by
natural swarms. Between 2007 and 2011, about 30 % of all honey bee colonies in the
United States failed to survive until spring due to the scourge of Colony Collapse Disor-
der [RT12]. Because honey bees are one of the most important animals for pollination
of agricultural crops, this disease is a serious threat that needs to be faced. Although
robots are not the first choice to fight Colony Collapse Disorder, robotic pollination is
a very interesting vision that features the integration of robotic swarms into nature.
Today, it is already possible to construct light-weight flying robots that could be used in
missions like exploration, search & rescue and agricultural assistance. Figure 1.1 shows
such an artificial bee that is in discussion to be used for pollination.

Swarm Robotics does not only profit from results in biology and robotic research.
It also has the potential to influence backwards. By experiments with robotic swarms,
behavior of social insects – and natural swarms in general – can be understood better.
Furthermore, the emergence of coordinated behavior through swarm intelligence can
lead to new concepts in artificial intelligence and robotic design.

In order to tell the robots what to do next, designers of swarm robotic systems
must face the problem of Task Allocation. Finding an appropriate mechanism for task
assignment is a challenging problem because Task Allocation is influenced by many
factors.

First of all, the complexity of tasks plays a major role. Tasks can be constrained
by arbitrarily difficult dependencies. An example for such a dependency is a sequential
order. In this case, robots have to wait for the completion of some tasks before others
can be allocated. Another example is the definition of special demands that specify
which number and which kinds of robots are needed to accomplish a task.

Furthermore, a robotic swarm has to adapt its behavior to the environment. If the
environment is not static but dynamic, robots will have even more difficulties to adapt
properly. The faster and the more abrupt an environment changes, the harder it gets
to design an efficient swarm.

Last but not least, in Swarm Robotics the physical robots will likely influence each
other, at least by their presence. If space is narrow, interference will almost certainly
occur and constrain beneficial allocation patterns.
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In order to support designers of swarm robotic systems, this thesis wants to en-
lighten the field of Task Allocation in Swarm Robotics. Because of the diversity of
application areas, there is no silver bullet for Task Allocation. In some cases, very easy
control rules may be sufficient, in others, complex negotiation between robots has to
be preferred.

Ideally, the robots are able to learn on their own which task to select under which
conditions. One way to achieve such adaptivity is the utilization of reinforcement
learning, which updates an action selection policy dependent on the observation of
rewards. Because of its high potential, this thesis sets a focus on this approach.

In order to compare reinforcement learning approaches and other mechanisms against
each other, this thesis aims at the simulation of robotic swarms that follow correspond-
ing control methods. To increase the informative value, the approaches should be tested
in both static and dynamic scenarios. For this purpose, a simulator that fulfills the
requirements of such experiments with robotic swarms needs to be developed.

1.2 Outline

This thesis provides an overview of mechanisms to solve Task Allocation in Swarm
Robotics. It is aimed at giving designers an idea of how to organize their robotic
swarm. Additionally, a concrete mission is investigated that needs a swarm to assign
four different tasks to its members. In order to compare approaches to this problem,
simulations in static and dynamic scenarios are carried out. For this purpose, a simula-
tion environment, called Swarmulator, was developed. In detail, the thesis is structured
as follows.

Chapter 2 enlightens the background needed to understand the following investi-
gation of Task Allocation in Swarm Robotics. First, basic definitions and taxonomy
are given, especially regarding the term Swarm Robotics. In addition, the correspond-
ing research field is presented. Finally, an introduction to reinforcement learning is
given, as it is a promising tool for both adapting and controlling mechanisms for Task
Allocation.

Chapter 3 describes different mechanisms for Task Allocation in Swarm Robotics.
In order to clearly arrange the overview, a taxonomy is proposed first. According to the
resulting classification into Heteronomous, Autonomous and Hybrid Task Allocation,
various approaches are sketched.

Chapter 4 presents the Swarmulator, a simulation platform that was developed in
the scope of this thesis. Although the Swarmulator is designed for testing mechanisms
for Task Allocation in Swarm Robotics, it features a modular architecture that allows
to simulate arbitrary experiments that rely on stepwise execution of a virtual world.

Chapter 5 constructs a foraging scenario that forces a swarm to maintain an effective
allocation of four different tasks. Following the taxonomy given in chapter 3, diverse
approaches to the problem are sketched. Some of them, in particular those that follow
the focus on reinforcement learning, are simulated in the Swarmulator and compared
in static and dynamic environments.

Finally, chapter 6 briefly summarizes the results of this thesis and gives a short
outlook on some current research directions that intend to bring Task Allocation to the
next level.
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Chapter 2

Background

Before a discussion about Task Allocation in Swarm Robotics is possible, the environ-
ment of this topic has to be illuminated.

First, important basic definitions and taxonomy are given. Especially the winged
word “swarm” needs some argumentation to delimit its bounds in the context of robotic
systems. Second, the research field of Swarm Robotics with its various research axes
is presented, concluded by an overview of swarm robotic projects. Third, a short
introduction to reinforcement learning is given, as it is a promising tool for adapting
action selection and, thus, task allocation.

2.1 Definitions and Taxonomy

This section defines some basic terms needed for the discussion about Task Allocation
in Swarm Robotics: First the term task in the context of a global mission is defined,
second the term Swarm Robotics is concretized and finally a definition of Multi Robot
Task Allocation is given, relating it to Task Allocation in Swarm Robotics.

2.1.1 Global Mission and Tasks

The first thing a designer of swarm robotic systems has to worry about is the definition
of goals, which have to be accomplished by the physical robots in the system. The
aggregation of all such goals is called the global mission of the swarm, where “global”
emphasizes that the swarm as a whole is responsible for achieving the mission. There
is only one single global mission and from this point of view it does not matter which
goal is pursued by which robot. In the context of this thesis, an informal description
of the global mission and its goals shall be sufficient.

Definition 1 (Global Mission). The global mission of a swarm defines the mission
the swarm as a whole has to accomplish. This mission consists of an arbitrarily large
number of goals, defining the circumstances in which the swarm is successful.

According to [Mat95], there are two types of goals: attainment- and maintenance-
goals. An attainment-goal can be removed from the mission when the goal is fulfilled,
whereas a maintenance-goal lasts forever and needs constant attention.

For example: “find and retrieve the black box of the crashed airplane” is an
attainment-goal, whereas “prevent the airplane from crashing” is a maintenance-goal.
Note that goals often (implicitly) define constraints, like only being valid if there is a
crashed airplane or if the airplane has not crashed yet. By this, multiple conflicting

5



6 CHAPTER 2. BACKGROUND

goals can coexist. Goals additionally may be ranked or rated, giving a clue about how
well a swarm performs.

Neither the global mission nor the goals specify how to achieve them. To enable
swarms of robots to handle a given mission, the mission has to be broken up into
smaller units that each can be executed by individual robots. Gerkey and Matarić
[GM01, p. 356] define a task as follows:

Definition 2 (Task). “A task is an atomic unit of computation and control that a
single robot will execute.”

Note that this definition emphasizes that a task must be executable by a single
robot. At first glance this seems to limit cooperation. At second glance a multi-robot-
task – a task that needs multiple robots for being successfully executed – is just a
form of compound task, which consists of multiple (atomic) tasks “complementing” one
another. For instance: the task “hand over object x” is a multi-robot task and can be
broken into the tasks “offer x” and “take offered x”.

The point in defining the terms task and global mission is to emphasize the difference
between the job of a single robot and the job of the swarm. This helps to distinguish
two basic views in the design of swarm robotic systems:

The global view abstracts from individual robots and deals with the swarm as a
whole. In multi-agent control, this view is applied onto the collective level men-
tioned in [Mat95].

The local view concentrates on individual robots and their actions. In multi-agent
control, this view is applied onto the individual agent level mentioned in [Mat95].

At global view, the swarm has exactly one task: accomplish the global mission. The
process of breaking this task into smaller units is called task decomposition and results
in a set of more or less complex tasks individual robots can execute to achieve the goals
of the global mission.

As goals can be interrelated and constrained, tasks can be interrelated and con-
strained, too. One of the most important dependencies between tasks are sequential
and parallel dependency. Sequential dependent tasks have to be executed one after the
other, whereas parallel dependent tasks can be executed in parallel, but are linked in
some way (e.g. requiring synchronized execution). Tasks consisting of various depen-
dent subtasks are called complex tasks. The most complex task in a swarm robotic
system is the achievement of the global mission.

Complex tasks can be described by graphical models. One recent model is the task
dependency graph, proposed by Brutschy in [Bru09], which focuses on sequential and
parallel dependency. Although the reason for each dependency is not mentioned in the
graph, a good overview of the tasks complexity can be gained.

Another recent representation of complex tasks is proposed by Cao et al. [CLIA10].
A tree structure is used to decompose a complex task into simpler subtasks, while
allowing to add some constraints into the graph, like giving a choice of two possible
decompositions or adding sequential interrelation.
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2.1.2 Swarm Robotics (SR)

Swarm Robotics (SR) is a research area which can be seen as a part of the research
in Multi Robot Systems (MRS). One step further, MRS are a subset of Multi Agent
Systems (MAS).

Defining the boundary of MRS in MAS is straightforward. As the name implies,
MRS focuses on robots: embodied agents which are placed in a physical environment.
Where most work in MAS concentrates on software agents, MRS give hardware a shot
and realize multi agent techniques in multi robot scenarios.

Research in MAS inspires both MRS and SR, especially in terms of communication,
cooperation and decision making (containing negotiation about scarce resources). An
introduction to MAS can be found in the book [Woo09].

Defining the boundary of SR in MRS is not as easy. It needs discussion of the term
swarm which has to concretize the vague category of multiple robots. This is done in
the following section. After that definition of SR, characteristics and advantages of the
swarm approach are given, followed by a taxonomy for SR.

2.1.2.1 Definition

A simple definition of Swarm Robotics can be formulated as follows:

Definition 3 (Swarm Robotics). Swarm Robotics (SR) is a research field studying the
design of systems consisting of a swarm of embodied agents (robots).

This definition is deliberately broad to give SR enough space in the realm of MRS.
Although SR is often seen as an independent research field, the only thing setting
SR apart from MRS is – in the above definition – the focus on a swarm of robots.
Unfortunately, the swarm characteristic consists of multiple interlaced attributes that
make its bounds fluid and a clear-cut definition difficult to impossible.

Yardsticks for “Swarm” Robotics. According to Dorigo and Şahin [DŞ04], there
are four “yardsticks” for how “swarm robotic” a system is.

(1) Relevance for large numbers of robots: The first attribute is the most
obvious one: The more individuals a group of robots can consist of, the more
swarm robotic it is. According to this, scalability should be a core issue in SR.

(2) Relatively few, large homogeneous groups: Few homogeneous groups make
a system more swarm robotic. Additionally each homogeneous group should con-
sist of a large number of robots. In the best case all robots have equal capabilities,
both in hardware and in software. This enables every individual to take on tasks
of other individuals, which makes the system more robust when single robots
drop out. Additionally the swarm gets more flexible, because it can be deployed
in different environments and missions without having to think about the abilities
of the individuals.

(3) Performance improvement by cooperation: A swarm robotic system should
be able to profit from cooperation, resulting in a higher performance than a single
robot could achieve. This performance boost can be gained both by concurrent
execution of simple tasks and by the execution of (complex) multi robot tasks,
which require a group of robots for successful execution.
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Swarm Robotic Systems

Scalable SRMinimalist SR

Multi Agent Systems

Multi Robot Systems

Swarm Robotics (SR)

systems

research fields

Practical
Minimalist SR

Nature-
inspired SR

Figure 2.1: Affiliation of SR to MAS / MRS and classification of SR studies with
respect to the inclusion of and the motivation for minimalism (of individuals).

(4) Local and limited sensing and communication: Robotic swarms should
consist of individuals with local and limited sensing and communication. This
minimalism in perceptual and communicational abilities lifts the importance of
cooperation because it gets harder to achieve tasks without communication.

Dorigo and Şahin emphasize that these four points cannot be seen as a checklist
defining if a study is swarm robotic or not. They are just yardsticks that give an idea
of the magnitude of “swarm roboticness”. According to Dorigo and Şahin, the new
term Swarm Robotics is still emerging and lacks a better definition.

Discussion on Minimalism. Minimalism of individuals, yardstick (4), is an ar-
guable attribute, which SR has mainly derived from biological self-organized systems.
Although a single ant does not seem to have high perceptual, computational and com-
municational capabilities, a swarm of ants is able to show complex intelligent behavior,
often referred to as swarm intelligence (like cooperation transportation of heavy objects
and collective building of a highly structured nest). Many researchers in SR start at
this point and try to focus on simple robots with emerging intelligent behavior.

Sharkey argues in [Sha07] that “despite its short history, swarm robotics has de-
veloped and moved away from its roots. As a result there is currently a lack of clarity
about its defining features, particularly about the continued importance of and reasons
for minimalism or simplicity of the individual robots in a swarm.”

To overcome this lack of clarity, Sharkey suggests the division of SR into two cat-
egories: Scalable SR, which allows arbitrarily complex individuals but still emphasizes
the need of scalability, and Minimalist SR, which emphasizes minimalist individuals.
Minimalist SR is further separated into Practical Minimalist SR and Nature-inspired
SR, reflecting the motivation of the researcher.

Figure 2.1 gives an overview of both the affiliation of SR to MRS / MAS and the
classification of different SR studies, derived from the discussion on minimalism.
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Refinement of yardsticks (1) & (2). This thesis refines the four yardsticks to get
a more precise picture. Especially yardstick (2) is rather vague in its formulation and,
in our opinion, needs some further adjustment. How many different robots are allowed
in a swarm robotic system and how many of each kind are needed?

The only reason for having few, but large groups of homogeneous individuals, is
raising robustness by redundancy : If one individual fails, there are enough left to do
its job. This prevents the system from single points of failure.

This situation can also be found in biological swarms, which are a natural source of
inspiration for Swarm Robotics. If, for example, in a bee colony [MAA12] a worker bee
dies, the swarm of bees will still survive due to its large number of remaining worker
bees. On a closer look, there is not only the caste of workers, but two additional
types of bees: drones and queens. Drones are bred as they are needed, their number
is season-dependent and they are not constantly needed. In contrast, queens are the
only type of bee that can mate and thus are required to get new worker bees. A swarm
of bees without a queen will die off, making queens an essential part of the swarm.
Surprisingly the number of queens in a swarm of bees is exactly one, turning the queen
into a single point of failure.

According to yardstick (2), a swarm of bees with only one single queen is less “swarm
robotic” than if there was a large number of queens. Nevertheless a swarm of bees is
very stable and robust and does not need more queens. A queenless hive is very rare,
because of two precaution mechanisms:

1. Supersedure process: If a queen gets old and lays less eggs, worker bees start to
breed new queens in cells called “queen cups”.

2. Emergency queens: If a queen dies unexpectedly, worker larvae are set to a royal
jelly diet, which turns them into queen larvae. Emergency queens are less pro-
ductive than queens raised in the supersedure process, but better than complete
failure of the swarm.

In both cases the newly raised queen will kill all present queens: the remaining
ones in the queen cups and, if present, the old queen. Additionally to the precaution
mechanisms, the queen resides inside the hive, which protects her from environmental
threats, like birds. This renders the chance of swarm failure in case of queen death very
low.

The queen bee example illustrates that the number of individuals in homogeneous
groups is not an essential point. Overall robustness, which limits the risk of swarm
failure, is much more important. Low numbers in concrete groups can be balanced by
a reduced chance of individual failure and proper emergency techniques. In some cases,
low numbers in a special group are even desired, like only having one single queen bee
(a central beacon of indirect control).

From this point of view, we want to answer the above questions:

How many robots of each kind are needed? As much as the concrete SR system
can robustly maintain.

How many different kinds of robots are allowed? Even if we have got the ex-
treme case where all robots are heterogeneous, the swarm as a whole can be
efficient, independently of the concrete set of robots available. Different combi-
nations of robots can all have a solid behavior in the concrete context, making
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the success of the swarm independent from the individual. So the answer is:
There are as many different kinds of robots allowed as the concrete SR system
can robustly maintain.

To conclude, yardstick (2) can be removed if an appropriate formulation of “as long
as the concrete SR system can robustly maintain” is added. Because both yardstick (1)
and (2) focus on the number of individuals, a combined yardstick is suggested. The
concrete number of individuals is not relevant if success of the swarm does not depend
on it. By this combination, three basic yardsticks remain: one about the numbers, one
about cooperation and one about the abilities of individuals.

This thesis suggests the following formulation of three yardsticks how “swarm
robotic” a Multi Robot System (MRS) is:

(I) Independence from addition and removal of individuals: MRS that do
not rely on concrete numbers of individuals, do not easily break on individual
failure and are scalable to large numbers are more swarm robotic. The way of
increasing independence is not prescribed. One prominent solution is maintain-
ing redundancy in all different kinds of robots. This yardstick is an extended
combination of yardstick (1) and (2).

(II) Profit from cooperation: MRS that make use of cooperation to increase per-
formance, are more swarm robotic. The way the performance boost is achieved
is not prescribed. Multi-robot tasks can require cooperation, single-robot tasks
can be executed concurrently. This yardstick equals yardstick (3).

(III) Minimalism of individuals: MRS with minimalist robots are more swarm
robotic. Minimalism covers perceptual, computational and communicational abil-
ities of robots in the swarm. This yardstick extends yardstick (4).

Each yardstick is motivated by some benefits expected from a swarm. The next
section covers those advantages.

2.1.2.2 Key advantages

The development of swarm robotic systems is driven by some desired benefits. [MP10]
lists the following advantages:

• Parallelism (quicker accomplishment of tasks),

• Robustness (no single point of failure),

• Scalability (outperform centralized systems by swarm size),

• Heterogeneousness (utilization of specialists, which can even appear in homoge-
neous swarms as a result of imperfect hardware components or learning),

• Flexibility (adaptivity to different applications),

• Complex Tasks (ability to perform complex tasks, single robots are not able to
execute) and

• Cheap Alternative (cheapness, simplicity and flexibility of simple robots).

As most of these benefits are directly backed by the three yardsticks in this thesis,
a reduced set of key advantages can be formulated:
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• Scalability and Robustness (favored by yardstick (I), proclaiming the indepen-
dence from individual count and failure)

• Performance (favored by yardstick (II), proclaiming the profit from cooperation)

• Cheapness and Simplicity (favored by yardstick (III), proclaiming the minimalism
of individuals)

As Parallelism, Heterogeneousness, Complex Tasks and Flexibility can be consid-
ered to be concrete benefits in the broad term of Performance, all benefits from [MP10]
are incorporated into the given core advantages. Note that Cheapness and Simplicity
are nice-to-have features that may not be needed in every swarm application due to
the availability of complex hardware. This aspect highlights the optionality of yard-
stick (III), which demands the minimalism of individuals.

2.1.2.3 Taxonomy

This section gives a brief overview of taxonomy in Swarm Robotics, which helps to
classify existing studies and to formulate new ones.

First a well-known taxonomy for swarm robots is given, followed by a more recent
taxonomy of cooperative Multi Robot Systems.

Taxonomy of Swarm Robots. Groups of mobile robots can be designed in various
ways. In order to highlight differences in design, Dudek et al. [DJMW93] define a set
of properties for swarms of robots, shown in table 2.1.

Dudek’s taxonomy describes a robotic swarm in its structure (size, composition and
reconfigurability) and its communicational and computational abilities. By limiting
the amount of robot abilities, the minimalism of individuals is amplified, while a ro-
bust (most likely redundant, potentially reconfigurable) structure tries to maintain the
swarms independence from individuals. Since the remaining characteristic (yardstick)
of SR, profit from cooperation, builds upon structure, computation and communication
and thus is more complex, cooperation is given its own taxonomy.

Taxonomy of Cooperative MRS. As swarm robotic systems are a particular form
of Multi Robot Systems, much of MRS taxonomy can be applied to SR. Since non-
cooperative MRS have little in common with SR, a focus on cooperative MRS is suf-
ficient. As shown in figure 2.2, Iocchi et al. [INS01] present a cooperation-focused
categorization of MRS along the following four related levels.

Cooperation: This level simply defines whether an MRS is cooperative or not. Since
Iocchi et al. [INS01] – as well as SR – focus on cooperation, only cooperative MRS
are categorized further by the following levels.

Knowledge: This level describes how much knowledge each robot has about the pres-
ence of other robots, in order to achieve cooperation. The corresponding attribute
for an individual robot is called Awareness.

Coordination: This level categorizes the amount of coordination in aware systems.
There are three levels of coordination: Strong Coordination, which relies on a
coordination protocol (a fixed set of interaction rules), Weak Coordination, which
does not rely on a coordination protocol, and No Coordination.
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property attribute value description

swarm size ALONE one robot
PAIR two robots

LIM-GROUP small number (relative to mission or envi-
ronment size)

INF-GROUP an effectively infinite number (with re-
spect to environment and mission size)

communication
range

COM-NONE no communication by hardware (e.g. radio
or infrared)

COM-NEAR communication with limited range
COM-INF communication with practically infinite

range

communication TOP-BROAD broadcasting
topology TOP-ADD unicasting (address based)

(. . . )

communication BAND-HIGH practically free communication
bandwidth BAND-MOTION communication cost equals motion cost

BAND-LOW expensive communication, in comparison
to motion

swarm ARR-STATIC fixed topology
reconfigurability ARR-COMM rearrangement based on communication

ARR-DYN relationship of members can change arbi-
trarily

swarm unit pro-
cessing ability

PROC-PDA push-down automaton equivalent process-
ing capabilities

PROC-TME turing machine equivalent processing ca-
pabilities

(. . . )

swarm homogeneous all members are equal
composition heterogeneous swarm consists of different types of robots

Table 2.1: Properties of a robotic swarm, as defined by Dudek et al. [DJMW93].



2.1. DEFINITIONS AND TAXONOMY 13

Figure 2.2: MRS taxonomy proposed by Iocci et al., figure is taken from [INS01].

Organization: This level further specifies how strong coordination is achieved, re-
garding the organizational structure. Centralization relies on at least one leader
giving orders. Distribution concentrates on autonomous decision making and de-
clines hierarchical structures. Centralization can be strong or weak dependent on
whether the leader role is fixed (in the course of an entire mission) or not.

Additionally Iocchi et al. [INS01] define two dimensions which are orthogonal to the
various levels of cooperation:

Communication: Systems can use direct or indirect communication. Direct Commu-
nication is an explicit way of information exchange that makes use of some sort
of hardware (e.g. radio or infrared). Indirect Communication makes use of stig-
mergy, a form of communication via the environment (e.g. by laying pheromones
affecting the sensory input of other team members).

System Composition: Robotic teams can either be homogeneous or heterogeneous,
dependent on whether all robots are equal (in both hardware and controlling
software) or not. This dimension is entirely the same as the property swarm
composition in Dudek’s taxonomy of swarm robots [DJMW93] above.

The taxonomy presented in this section serves as a basic vocabulary in the research
of swarm robotic systems.

2.1.3 Multi Robot Task Allocation (MRTA)

Assuming that the complex task of achieving the global mission is already decomposed
into atomic tasks individual robots are capable of, the most important question in a
cooperative Multi Robot System (MRS) is: When should which robot execute which
task?
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2.1.3.1 Definition

Generally the process of mapping tasks to robots is called Task Allocation. In the
context of MRS, Dahl et al. [DMS09] define Multi Robot Task Allocation (MRTA) as
follows.

Definition 4 (Multi Robot Task Allocation). “MRTA is the problem of optimizing the
allocation of tasks to robots over time, with respect to some given criteria.”

Depending on the goals in the global mission, there are various possible criteria for
optimization: One might expect the minimization of costs, like energy or time. Others
might emphasize the maximization of social welfare, for example by maximizing the
number of achieved goals. Often many aspects have to be balanced to achieve an
optimal trade-off.

This thesis investigates mechanisms for Task Allocation in Swarm Robotics, which
is MRTA in the context of SR. Remember that SR is a subclass of MRS using a swarm
of robots (according to the three yardsticks from the definition of SR in section 2.1.2.1).

MRTA is a problem closely related to planning and scheduling. Many well-known
theoretical problems are equivalent to concrete instances of MRTA, e.g. the Optimal
Assignment Problem [GM03] or the Traveling Salesman Problem [STBE09].

2.1.3.2 Taxonomy

There are different kinds of MRTA problems. To discriminate MRTA problems, Gerkey
and Matarić [GM04] propose a taxonomy along the following three axis:

Robot ability: single-task (ST) vs. multi-task (MT). This attribute tells if all
robots are able to perform only one single task at a time (ST) or if at least one
robot is potent of executing multiple tasks concurrently (MT).

Task character: single-robot (SR) vs. multi-robot (MR). This attribute clears
whether there are tasks that require multiple robots (MR) or not (SR).

Assignment: instantaneous (IA) vs. time-extended (TA). The Assignment at-
tribute defines if there is information available that enables planning. IA means
that only instantaneous task allocation is possible. Every robot only plans for
the next task to do. In TA, more information about robots, tasks and / or envi-
ronment (e.g. a model) is available that enables planning of future task execution
extending the current one.

MRTA problems of the class ST-SR-IA are most likely the easiest to handle, as
they are actually instances of the Optimal Assignment Problem (OAP) [GM04]. On
the other side, multi-tasking robots (MT) may be able to perform much more tasks
in the same time, multi-robot tasks (MR) may be more efficient than single-robot
tasks and time-extended assignment (TA) offers the potential of better multi robot
coordination through planning and scheduling.

2.2 The Swarm Robotics Research Field

This section gives a brief overview of the field of research in SR, especially regarding
the context of Task Allocation.
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2.2.1 Research Axes

Although SR is a young field of research, many research axes have emerged that ex-
plore the possibilities of swarms in MRS. The following propositions of research axes
contribute to this thesis in two ways: On the one hand they give an entry point for
finding literature in the field of Swarm Robotics. On the other hand they show that
Task Allocation is one of the youngest research axes.

One of the first categorizations of research relevant for swarms is presented by Cao
et al. [CFK97] who classify research in cooperative mobile robots along five axes:

• group architecture,

• resource conflicts,

• origins of cooperation and

• geometric problems.

Group architecture defines the organizational structure of the mobile robots, for
example a swarm. Resource conflicts arise when multiple robots share the same envi-
ronment. The search for origins of cooperation is another aspect of research, whereas
learning is seen as a key component for adaptive cooperation. Finally geometric prob-
lems bother with path planning, formation and pattern generation.

The paper does already mention Task Allocation: it is seen as a basic mechanism
for generating cooperation, but up to this point it did not get enough attention on its
own to justify a new axis.

Recent reviews of SR propose new axes to better represent the amount of ongoing
research in each category. Bayindir and Şahin [BŞ07] define five main axes, namely
Modeling, Behavior Design, Communication, Analytical Studies and Problems. Each
axis, except Analytical Studies, has got some subgroups, getting into more detail:
Behavior Design, for instance, contains the axis of learning. The authors focus on an
extensive study of present research, so topics without proper attention by the swarm
robotic community did not get an axis. Again Task Allocation is just a side issue,
without even getting a sub-group.

One of the most recent reviews of SR is written by Mohan and Ponnambalam
[MP10]. They present a state of the art survey along nine research axes:

1. biological inspiration

2. communication

3. control approach

4. mapping and localization

5. object transportation and manipulation

6. reconfigurable robotics

7. motion coordination

8. learning

9. task allocation

Although most papers listed in the axis of task allocation are investigating Multi
Robot Task Allocation without a focus on SR, they give a good starting point for
various mechanisms useful both in MRS and SR.
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2.2.2 Canonical testbeds in Swarm Robotics

Most studies in SR define their own test scenario, which is then used to build a concrete
swarm robotic system capable of solving the problem. This leads to a huge amount of
differently designed global missions and as a result to many different solutions which
are hard to compare. Fortunately, most missions are instances of basic mission types,
already known from MRS. Because of their frequent use in literature, these types can
be seen as typical, canonical testbeds in MRS and SR.

According to [INS01] there are five representative domains for the study of cooper-
ative MRS:

Foraging is about finding and retrieving some sort of prey. This is one of the most
prominent testbeds in SR due to its relation to social insects and the poten-
tial use in complex missions like search & rescue, toxic waste cleanup or mine
countermeasure.

Multi target observation is about finding some static or moving targets and holding
them in sensory range as long as possible.

Box pushing generally is a form of transportation mission. In SR, box pushing most
likely is about collectively pushing boxes that are larger or heavier than the
robots. This is basically a sub-category of collective transportation, where some
objects have to be transported by more than one robot in a cooperative, hopefully
coordinated, manner.

Exploration and flocking are about moving through the environment, either to ex-
plore the world or to arrange and move in some kind of shape.

Soccer is about cooperation in a competitive scenario. The research in this domain is
mostly driven by competitions like the RoboCup [RF12].

A more recent study [BŞ07] lists some typical missions in current research as sub-
categories of the main axis Problems:

Pattern formation is about positioning in a way to form a specific shape. This kind
of mission is closely related to flocking.

Aggregation is about gathering in one location.

Chain-forming is a special kind of pattern formation.

Self-assembly is about the formation of complex structures out of multiple simple
units.

Coordinated movement is about keeping a global pattern while moving. This kind
of mission is closely related to flocking.

Hole avoidance is a form of coordinated movement that prevents robots from step-
ping into holes.

Foraging is, like above, about finding and retrieving some sort of prey.

Self-deployment is about covering the environment. This is a combination of explo-
ration and observation of space.

This list of research axes in SR shows the diversity of current research. All missions
described are relevant for task allocation, because every kind of cooperation can be
decomposed into atomic tasks that have to be allocated properly. Nevertheless, the
most relevant mission for this thesis is foraging.
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Figure 2.3: Robots of the Centibots Project in action. The image, also appearing in
[OVM05], is taken from [SRI02].

2.2.3 Swarm Robotic Projects

The robotic community has started various projects for the research of swarm robotic
systems. This section introduces the most relevant ones for this thesis.

2.2.3.1 The Centibots Project

The Centibots Project [KOV+03, SRI02] is funded by the Defense Advanced Research
Projects Agency (DARPA) and aimed on missions like urban surveillance. The project
is supported by SRI International’s Artificial Intelligence Center (AIC), Stanford Uni-
versity, the University of Washington and the robot manufacturer ActivMedia Robotics.
As the name implies, Centibots is focused on the cooperation of 100 robots (“centum”
Latin for “one hundred”).

The results of the Centibots Project are presented in [OVM05].

Hardware. Two types of robots are used in the Centibots Project: the ActivMedia
Pioneer II (AT or DX) and the ActivMedia Amigobot. The Pioneer is equipped with
a laser range finder and meant for exploration. After Pioneer surveillance, a team of
Amigobots is following the Pioneers exploiting gained knowledge about the environment
to efficiently search for objects of interest, track intruders and share information among
themselves and a command center. Figure 2.3 shows both Pioneers and Amigobots in
action.

2.2.3.2 The iRobot Swarm

The iRobot Swarm is developed by the Multi-Robot Systems Lab at Rice University
(Houston, Texas, USA), in cooperation with the robot manufacturer iRobot. According
to [McL04], the ultimate goal of research with the iRobot swarm is to program group
behaviors at the swarm level. To achieve this goal, [McL04] proposes a library of
basic and more complex (combined) behavior. An example for basic behavior would
be moveForward or moveStop, whereas followRobot and avoidRobot are complex.
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Figure 2.4: The iRobot Swarm consists of about 100 iRobot SwarmBotsTM, charging
stations and navigational beacons. The image is taken from [MY05].

Hardware. The iRobot Swarm consists of about 100 iRobot SwarmBotsTM1. Swarm-
Bots are small, palm-sized, cubical-shaped autonomous robots, able to recharge them-
selves in special docking stations (cf. figure 2.4). Besides bump sensors, light sensors
and a camera, the robot has got some infra-red transceivers, enabling it to communicate
over short distances.

2.2.3.3 The I-SWARM project

The I-SWARM project [SSB+05, K+08], funded by the European Commission and
coordinated by the University of Karlsruhe (Germany), aims for the development of a
swarm of up to 1000 micro-robots, 2x2x1 mm3 in size. I-SWARM stands for “Intelligent
Small-World Autonomous Robots for Micro-manipulation”.

Due to the very small size of single robots, which limits the sensory capabilities of in-
dividuals, collective perception becomes a key component for cooperative behavior. For
example, obstacles which are much larger than the robots, can only be recognized by the
accumulation of sensor data [KKC+05]. Another example for collective perception (with
minimal communicational and computational efforts) is the use of trophallaxis-inspired
strategies for spreading information about target location [SMC07]. Trophallaxis is the
transmission of food from one animal to another, e.g. between ants.

Hardware. On the way to mm-sized robots, larger prototypes have been developed.
The most recent coin-sized prototype, a little smaller than a cube with edge length 3 cm,
is called Jasmine III. It is part of the open-source project Swarmrobot [SK11], which
is basically supported by the University of Stuttgart (Germany). The Jasmine III is
intended to be a cheap swarm robot with a “sandwich-layer” design. Various extension
boards can be used to add sensor capabilities, like GPS. Figure 2.5 shows a small swarm
of Jasmine robots collectively sensing an obstacle.

1SwarmBot is a trademarks of iRobot, inc.
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Figure 2.5: Jasmine robots in action, collectively sensing an obstacle. The image is
taken from [KKC+05].

Figure 2.6: Two swarm-bots, each consisting of six s-bots, in simulation: the left one
is moving down a stair, the right one is crossing over a hole. Both images are taken
from [MPG+04].

2.2.3.4 The Swarm-bots Project

The Swarm-bots Project [PKG+02, IRI06], funded by the European Commission and
coordinated by Prof. Dr. Marco Dorigo (Université Libre de Bruxelles, Belgium), con-
centrates on the development of the swarm-bot, an “artefact composed of a number of
simpler, insect-like, robots” [IRI06]. Beside the construction of hardware, this includes
the implementation of a simulator and the integration of swarm-intelligence-based con-
trol mechanisms.

Hardware. A swarm-bot consists of 30-35 homogeneous robots, called s-bots. The
s-bot [MPG+04] is a fully autonomous robot with the ability to connect to each other.
Two different kinds of grippers can be used to connect the robots either in a rigid or
flexible way. This enables the self-assembled robot to move in rough terrain, featuring
different heights and big holes (bigger than single robots). Each robot is equipped
with an omnidirectional camera and infra-red proximity sensors and s-bots are able to
communicate via LED-lights. Figure 2.6 shows a simulation of two swarm-bots (each
consisting of six s-bots): the first one is moving down a stair, the second one is crossing
over a hole.
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Figure 2.7: The Swarmanoid robots: the left picture shows the connection of three foot-
bots and one hand-bot, the right picture shows an eye-bot attached to the ceiling.
Both images are taken from [DFG+11].

2.2.3.5 The Swarmanoid Project

The Swarmanoid Project [DFG+11, IRI11] is the successor project of the Swarm-bots
project, also funded by the European Commission and coordinated by Prof. Dr. Marco
Dorigo. A swarmanoid is a swarm consisting of multiple heterogeneous robots, able
to self-assemble into more complex forms, competent of achieving tasks the robots
cannot perform on their own. The project includes the implementation of a simulator,
called ARGoS [PTO+11, P+12], which is used to develop and test distributed control
mechanisms.

Hardware. A swarmanoid consists of about 60 autonomous robots of three different
types: eye-bot, foot-bot and hand-bot. The eye-bot is a flying robot, which can attach
itself to a magnetic ceiling, survey the local environment from an aerial view and
provide coordination support. The foot-bot is basically an advanced version of the s-
bot, equipped with a smaller gripper for rigid connections. In contrast to the foot-bot,
the hand-bot is not able to move on the ground, but it is equipped with two gripper
arms and a magnetic ceiling attachment, enabling it to climb shelves. Because the
hand-bot is not able to move itself, it needs to connect with foot-bots. All three types
of robots are able to communicate via LED-lights. Figure 2.7 shows the Swarmanoid
robots.

2.3 Reinforcement Learning

Reinforcement learning is the iterative process of improving an agent’s behavior by
observing goal-relevant attributes of a real or simulated environment.

Due to its adaptive nature, reinforcement learning is well suited for acclimatizing
to a previously unknown – and possibly dynamic – environment. As the composition
and size of a robotic swarm most likely is both unknown and dynamic, reinforcement
learning is a promising tool for controlling and modulating task allocation mechanisms
in Swarm Robotics.

This section is based on the book “Reinforcement Learning: An Introduction” by
Sutton and Barto [SB98] and gives a compact overview of some reinforcement learning
techniques relevant for this thesis.
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2.3.1 Basics

Like in task allocation, one central question in reinforcement learning is which action
to take next. To answer this question properly, the agent takes into account, in which
state the environment (all outside the agent’s control) currently is. The learner and
decision maker selects the best suited action by maximizing the amount of reward it
can expect. After one or more steps of interaction with the environment, the knowledge
about rewards is updated and thus the action selection changes.

2.3.1.1 Elements

A reinforcement learning system basically consists of four elements: a policy, a reward
function, a value function and a model of the environment.

The policy defines the behavior of an agent. This is implemented by a probabilistic
function π which defines π(s, a), the probability of selecting action a in state s.

The reward function either defines the desirability of a state or the desirability of
a state-action pair (selecting an action in a specific state). After each step of
execution, the agent observes the corresponding reward. Reward values are spec-
ified a priori, should be directly related to the goals of the agent and thus have
to be designed very carefully. The agent is not able to alter the reward function,
but it may alter its policy to optimize the amount of reward accumulated in the
long run. Achieving a greater amount of reward should mean that the agent is
performing better with respect to its goals.

The value function V π is a mapping of states to numerical values V π(s), defining the
amount of reward the agent can expect to accumulate in the future, starting from
state s and using policy π. In contrast to the reward function, which defines the
immediate gratification for the transition into a state, the value function indicates
the desirability of a state in the long run. Alternatively, the action-value function
Qπ can be defined. Qπ(s, a) defines the amount of reward the agent can expect
when taking action a in state s and following policy π afterwards.

The model of the environment is an optional tool used to simulate changes in the
environment. This enables the agent to plan a course of actions by forecasting
its resulting states and rewards.

Since every function in this model works with the state of the environment, it is
very important that the state information includes all sensible data relevant for decision
making. In a game of chess, it is sufficient to know the current board configuration to
make proper decisions. In contrast, in the memory card game the current configuration
of cards does not help, the results of previous actions are the core information. If an
environment’s state signal contains all relevant information from the past states and
actions, the signal has the Markov property.

Definition 5 (The Markov Property). A state signal st has the Markov property if
the probability for every following state st+1 and every following reward rt+1 is solely
dependent on the action at taken in st, rendering the history of preceding states and
actions s0, a0, . . . , st−1, at−1 irrelevant.

A state signal including the complete history of past actions and events always
fulfills the Markov property. Fortunately, in most cases, like in the example of a game
of chess, this is not necessary and a much more compact, reusable state representation
is sufficient.
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2.3.1.2 Markov Decision Processes

A Markov decision process (MDP) is a reinforcement learning problem satisfying the
Markov property. An MDP with a finite number of states and actions is called finite
Markov decision process (finite MDP).

Finite MDPs can be described by a finite set of transition probabilities, covering all
state transitions s

a−→ s′. In finite MDPs, agents are able to manage both the policy π
and its value function V π in finite space, because all possible values π(s, a) and V π(s)
can be stored explicitly, e.g. in a table or an array.

2.3.1.3 Generalized Policy Iteration

Initially an agent does not know the optimal policy π∗ and its corresponding value
function V ∗. To overcome this lack of knowledge, the agent starts with an arbitrary
initial policy (potent of selecting every action in every state by chance) and improves
it in an iterative manner. This process is called policy iteration.

Policy iteration consists of two steps: policy evaluation and policy improvement.
Policy evaluation is the process of constructing the value function V π which reflects the
desirability of each state when following policy π. Policy improvement is the process
of analyzing the value function V π to build a greedy policy π′ exploiting knowledge
about expected rewards. The resulting policy π′ then becomes the new π for policy
evaluation, which starts the next iteration.

The creation of a policy π′ from a value function V π is not very intuitive. In fact,
the value function on its own is not sufficient for the construction of π′, because of the
nonavailability of information about how to reach a desired state. To build a greedy
policy, the transition probabilities of the Markov decision process have to be evaluated.
By the calculation of expected rewards depending on both state and action, the greedy
action for a specific state, which is the one with the highest expected reward, can easily
be identified. If transition probabilities are not known, the agent has to estimate them
by itself. This can be done by managing an action-value function instead of a value
function. The action-value function Qπ defines numerical values Qπ(s, a) which is the
expected accumulated reward for choosing action a in state s, when following policy π
later on. This expected reward inherently includes transition probabilities.

In policy iteration both policy evaluation and policy improvement are completed
before proceeding to the next step. As policy evaluation itself needs multiple sweeps
to construct the value function (or action-value function) consistent with the current
policy, the process can get very costly and time consuming. Fortunately, it is possible to
partially execute policy evaluation and policy improvement, as long as both interacting
processes continue to update all reachable states.

Generalized policy iteration refers to the general idea of interacting policy evaluation
and policy improvement, without constraining the amount both processes update their
target parameters. One process is making the (action-)value function more consistent
with the policy, the other one is making the policy more greedy with respect to the
(action-)value function. Finally, when the policy π is greedy to its own evaluation
function V π or Qπ, the processes stabilize and the optimal policy π = π′ = π∗ has been
found.
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2.3.1.4 Exploration vs. Exploitation

As (generalized) policy iteration needs to update all states continuously, it is very
important to constantly explore the state space by allowing the selection of every avail-
able action. In contrast, knowledge about rewards should be exploited to prefer actions
leading to “good” states and evade actions leading to “bad” states. To find an opti-
mal policy, no action may be banned, but without focusing on profitable actions, the
optimal, greedy policy will never be in charge. This conflict in reinforcement learning
is called exploration vs. exploitation.

Policy iteration has to balance exploration and exploitation: without exploration
“good” states may never be found, without exploitation there will be no learning effect.
The trick is to grant the action selection policy the ability, to select every action in
every state at least by minimal chance. Moreover, by continuously decreasing this prob-
ability without hitting zero, the policy can be made increasingly greedy, asymptotically
reaching the optimal policy.

ε-greedy action selection: a policy is called ε-greedy if it returns a random action
with probability ε and the greedy action otherwise.

softmax action selection: a policy with softmax action selection uses the action-
value estimates to weight and rank all actions. The probability of selecting an
action is dependent on its weight which still grants the greedy action the highest
chance of being selected, but grades the probabilities of all actions, especially of
the non-greedy ones. Note that every probability must remain greater zero to
enable constant exploration.

It may depend on the concrete reinforcement problem which method of action se-
lection performs better. If there are many actions that reveal to be “bad” very fast,
softmax action selection might be the better choice, because it prefers less “bad” ac-
tions for further exploration. But if those actions appearing to be “bad” at the start
tend to be better in the long run, ε-greedy action selection will perform better, because
it gives equal chances for exploration, regardless of past experience.

2.3.2 Learning Methods

This sections introduces three basic classes of methods in reinforcement learning: dy-
namic programming, Monte Carlo methods and temporal-difference learning.

2.3.2.1 Dynamic Programming

Dynamic programming aims to calculate the best policy by the use of a perfect model
of the environment. This model is given by a complete finite Marcov decision process,
defining the dynamics of the environment.

Generally dynamic programming finds the optimal policy by strict policy iteration:
starting with a random policy the model is used to calculate its corresponding value
function or a good approximation of it. After that, the value function is analyzed to
create a greedy policy, which is subject for the next iteration. This process continues
until the policy does not change anymore.
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As already mentioned, policy evaluation can be a costly process and, if realized
iteratively, converges to V π only in the limit. This is a result of the iterative structure
of V π which defines the estimated accumulated reward following policy π:

V π(s) = Eπ{rt+1 + γV π(st+1) | st = s}, (2.1)

where Eπ{. . . | st = s} is the expected value when starting at any time t in state
s and following policy π. Each value of the value function can be calculated from the
sum of the immediately following reward rt+1 and an – eventually discounted – amount
of expected reward following in the reached state st+1, which is already known as the
value V π(st+1). The discount factor γ is used to control the influence of future rewards.

Since dynamic programming features a perfect model defining transition probabili-
ties Pass′ and expected rewards Rass′ , the value function can be iteratively computed by
the following update rule:

Vk+1(s) =
∑
a

π(s, a)
∑
s′

Pass′
[
Rass′ + γVk(s

′)
]
, (2.2)

where π(s, a) is the probability of selecting action a in state s following policy π,
Pass′ is the transition probability of transition s

a−→ s′ and Rass′ is its expected immediate
reward. This update rule uses the already known value function of step k to calculate
the next iteration k + 1. As soon as no further changes occur the computation is
finished.

Update rule 2.2 implements formula 2.1 by including the transition probabilities
Pass′ and the expected immediate rewards Rass′ known from the environment’s model.
The inner sum

∑
s′ Pass′

[
Rass′ + γVk(s

′)
]

weights the expected accumulated rewards
for all possible following states s′, which may result from taking action a in s, by the
transition probabilities Pass′ . These averages, which are dependant on the chosen action
a, are weighted by the outer sum

∑
a π(s, a) covering all possible actions a in state s.

The computation of Vk+1(s) for all states s is called a sweep through the state space.
Fortunately, it is not necessary to wait for convergence, as it is possible to rearrange
sweeps and even interactively combine them with policy improvement.

Value Iteration. An example for such a rearrangement is value iteration. In value
iteration every sweep of the value function includes the selection of the most rewarding
action. One sweep is computed by the following update rule:

Vk+1(s) = max
a

∑
s′

Pass′
[
Rass′ + γVk(s

′)
]

(2.3)

In contrast to update rule 2.2, the value function does not cover expected rewards
for all actions that could be taken by an arbitrary policy π. Instead of weighting by the
probabilities π(s, a) for all possible actions a, only the one action maximizing expected
reward is used to define the value function.

By this definition, the value function specifies the expected accumulated reward of a
state, assuming that the next action taken is the greedy one, which is equal to following
a greedy policy derived from the last sweep. As soon as Vk+1 ≈ Vk, value iteration can
be aborted and Vk+1 can be used to derive a greedy policy which is near or equal to
the optimal one.

Regarding Task Allocation in Swarm Robotics, dynamic programming can be used
to calculate a policy for the swarm as a whole. This can be compared to a game of chess,
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where a player uses a model (chess rules and expected behavior of the opponent) to
compute a greedy strategy for his swarm of chessmen. Unfortunately, even the relatively
small swarm-environment of chess offers so many different states that the calculation
of a perfect policy is infeasible. After all, it may be sufficient to limit computation to
the next few turns. Its depth can be efficiently extended by various techniques, e.g. by
pruning (omitting unlikely branches in the state tree).

Beside the computational expense, the most limiting downside of dynamic pro-
gramming is the need for a model. Because of imperfect hardware and unpredictable
dynamics of the swarm and the environment, it may be impossible to design an appro-
priate model.

2.3.2.2 Monte Carlo Methods

In contrast to dynamic programming, Monte Carlo methods do not need a perfect
model of the environment’s dynamics. Instead, they experience transition probabilities
and rewards either in simulation or on-line.

The central idea of Monte Carlo methods is to the execute each experimental run
until termination, before analyzing the observations and adjusting a value function. In
practice this implies that tasks for Monte Carlo methods need to work with episodic
tasks, which always terminate at some time.

After each episode generated by a concrete policy π, policy evaluation takes place,
generally by averaging the observed rewards for each state. The next step is the con-
struction of a new policy π′ based on the previously calculated value function V π.
As Monte Carlo methods lack a perfect model and thus transition probabilities are
not known, the value function V π is not sufficient for policy improvement. Therefore,
as already proposed for generalized policy iteration in section 2.3.1.3, an action-value
function Qπ is managed instead: after each episode k evaluating policy π, for each
state-action pair (s, a), all rewards following the first occurrence of (s, a) are summed
up. The approximated Q-value for π after episode k, Qπk(s, a), is then defined as the
average of this episode’s sum and all sums from previous episodes evaluating π. In the
limit (k →∞), Qπk converges to Qπ. By iterating over all states and selecting the action
which maximizes the corresponding Q-value, a greedy policy can easily be derived.

As Monte Carlo methods rely on experiencing all states and rewards, exploration
is a main issue. To ensure that exploration continuously takes place in all episodes, a
soft policy should be used, e.g. ε-greedy.

Regarding Task Allocation in Swarm Robotics, Monte Carlo methods can be used
to improve the robot’s efficiency in episodic tasks. The main disadvantage of this
approach is the necessity to wait for a terminal state before adaptation can take place.
The Q-values and the derived greedy strategy of an agent is not updated until the
end of each episode. This delays adaptation unnecessarily. Nevertheless, Monte Carlo
methods may be useful for prototyping policies in simulation, which can be refined in
live environments later on.

2.3.2.3 Temporal-Difference Learning

Another solution method for reinforcement learning solely relying on experience is
temporal-difference (TD) learning. In contrast to Monte Carlo methods, TD learning
does not wait for a terminal state before policy evaluation takes place. Instead, TD
learns on-line during the experience of a – possibly infinite – episode.
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Like Monte Carlo methods, TD learning abandons the use of a perfect model of the
environment’s dynamics. As a result, TD learning generally does not manage a value
function V , but an action-value function Q that can be used to derive a policy from.

After each transition st
at−→ st+1, the resulting rewards rt+1 is observed and the

Q-value for action at in state st is updated as follows:

Q(st, at) = Q(st, at) + α ∗∆

= Q(st, at) + α ∗ [rt+1 + γQ(st+1, at+1)−Q(st, at)] ,
(2.4)

where γ is the discount rate, ∆ is the change in reward expectation and α is a
constant factor that defines, how much of ∆ is used to adapt the Q-value. α = 1
would mean that Q(st, at) is completely driven to the new reward expectation rr+1 +
γQ(st+1, at+1). Smaller values of α make Q more robust against the influence of the
observed reward rt+1. Thus, α steers the speed of Q adapting to new situations,
rendering it an important control parameter.

Sarsa. Update rule 2.4 can be extended to a complete TD control algorithm: in each
step t + 1, st and at are known from the last step t, rt+1 and st+1 are observed after
taking action at in st, and at+1 is chosen from the available actions in st+1 using a
policy derived from Q (e.g. ε-greedy). Because this algorithm is based on the quintuple
of events (st, at, rt+1, st+1, at+1), it is called Sarsa.

Regarding Task Allocation in Swarm Robotics, Sarsa – and TD learning in general –
is a promising algorithm. If rewards are defined in a way that guides robots to the
desired behavior, Sarsa seems to be useful for the selection of tasks.

2.3.3 Improved Techniques

In reinforcement learning many techniques can improve the quality of the learned policy.
This section covers some of them: off-policy control, eligibility traces and function
approximation.

2.3.3.1 Off-Policy control

Up to this point, we have concentrated on on-policy control. The policy used for action
selection was the same one that should be optimized. On-policy control can only find
a policy that still explores.

Off-policy control uses a behavior policy for action selection, while optimizing an
estimation policy. By this, the estimation policy can be greedy, without abandoning
exploration.

One favorite example for off-policy control is Q-learning. Q-learning is a temporal-
difference control algorithm very similar to Sarsa. In its simplest form, one-step Q-
learning, it uses the following update rule:

Q(st, at) = Q(st, at) + α ∗
[
rt+1 + γmaxa′ Q(st+1, a

′)−Q(st, at)
]

(2.5)

The only difference to Sarsa is the addition of the max-operator which conforms the
use of a greedy policy derived from Q for the selection of at+1. By this, the Q-values
approximate Qπ

∗
, the action-value function corresponding to the optimal policy π∗.

Nevertheless, a soft policy (e.g. ε-greedy) is used for action selection, which enables
constant exploration.
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There is one disadvantage in off-policy control: the on-line performance may be
worse than when using on-policy control. This is a result of Q-values being more
advanced than the exploring behavior policy. For example: if the optimal path in a
world is risky and false steps are punished, e.g. when walking along a cliff, exploration
based on the optimal path is deadly. Sarsa would learn Q-values that include the fuzzy
exploring walk, while Q-learning ignores the danger for an explorer and lays down
breadcrumbs on the dangerous edge of the cliff.

2.3.3.2 Eligibility Traces

When an agent using one-step temporal-difference learning observes a reward rt+1,
only the last state-action pair (st, at) is benefited (cf. update rule 2.4). In the limit, of
course, this reward will be propagated through all Q-values by the discount rate γ, but
the immediate update is entirely focused on Q(st, at). Thus, the learning of delayed
rewards, which are related to actions some steps ago, is very slow. To extend the limited
last-step view to a diminishing trail of recent state-action pairs, eligibility traces are
used.

An eligibility value e(s, a) defines the qualification of Q(s, a) for being influenced
by an immediate reward. It is raised when the state-action pair is observed and it
is continuously decreased later on. This builds an eligibility trace, quantifying the
influence of rewards on recent state-actions pairs.

Sarsa(λ). The one-step TD control method Sarsa from section 2.3.2.3 can be ex-
tended by eligibility traces. Because the diminishing rate of a trace is controlled by the
parameter λ, the resulting algorithm is called Sarsa(λ). The following modifications
have to be made.

First the eligibility values for all state-action pairs have to be initialized by zero.
In each step, before the Q-values are updated, the eligibility value for the state-action
pair (st, at) is increased by one (or alternatively set to one).

Second the update rule 2.4 has to be extended to modify all Q-values with respect
to their eligibility value:

Qt+1(s, a) = Qt(s, a) + et(s, a) ∗ α ∗∆t, for all s, a, (2.6)

where ∆t is the familiar change in expected reward ∆t = rt+1 + γQt(st+1, at+1) −
Qt(st, at). The indexes t and t+1 of Q highlight the iterative process of the action-value
function: every time step changes Q as a whole, not only single Q-values.

Third the eligibility values for all state-action pairs have to be decreased after each
update of the Q-values:

et+1(s, a) = γ ∗ λ ∗ et(s, a), for all s, a,

where γ is the familiar discount factor and λ is a constant parameter controlling
the stability of the discounted eligibility values.

By the use of eligibility traces the gap between one-step temporal-difference learning
and the use of full episodes in Monte Carlo methods can be closed.
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2.3.3.3 Function Approximation

All methods for reinforcement learning presented in this thesis rely on a finite state
and action space, which allows to store complete policies, value functions and eligibility
traces in finite space.

Unfortunately, the number of states and actions may be infinite. This section
exemplarily concentrates on states. A state consisting of a continuous variable like
temperature allows to define an infinite number of states. Managing a table with
values for each temperature state is neither possible nor meaningful. If an agent knows
the desirability of temperature x, it still doesn’t know the desirability of immediate
neighbors, because every little change in temperature x+ ε will result in a freshly new
state with unknown desirability.

To overcome this problem, function approximation can be used. This changes the
interpretation of a state s when used as a parameter, for example in a value function V :
instead of using s to look up the return value V (s) in a table, all available sample points
in V are used to approximate V (s).

Function approximation enables the agent to generalize from sample values. Even
if an agent gets into a state it has never seen before, it can profit from its knowledge
and take an appropriate action based on experience with similar states.

2.4 Summary

This chapter has described background knowledge needed to understand the following
investigation of Task Allocation in Swarm Robotics. First, some basic definitions and
taxonomy were presented. Second, the research field of Swarm Robotics was discussed.
Third, an introduction to reinforcement learning was given.

For a start, the swarm’s global mission, which consists of multiple goals, has been
defined. To achieve these goals and to fulfill the global mission, robots in the swarm have
to execute tasks. In this context, two essential points of view have been introduced:
the global view, which focuses on the swarm as a whole, and the local view, which
concentrates on single individuals.

After that, the term “swarm” has been concretized by the definition of three basic
yardsticks telling how “swarm robotic” a system is. This description helped to classify
Task Allocation in Swarm Robotics, which is a special case of the Multi Robot Task
Allocation problem focusing on the use of a swarm of robots.

The following presentation of the Swarm Robotics research field showed the context
of this thesis. Recently, Task Allocation was credited to be a research axis on its own.
Although Swarm Robotics is still a young research field, some canonical testbeds can be
identified that appear in a high number of papers. In the experimental part (chapter 5),
this thesis will focus on the foraging domain, taking inspiration from the Swarmanoid
project, which features very well designed mobile robots and was presented in this
chapter beside other well-known swarm robotic projects.

Finally, reinforcement learning was demonstrated to be a powerful tool for adapting
to a previously unknown environment. This seems to be very valuable in the context
of Swarm Robotics because it can improve Task Allocation by rewarding a robot for
selecting the most efficient tasks.

From global view, dynamic programming could be used to compute an optimal
solution for the swarm as a whole. Unfortunately, dynamic programming needs a
perfect model of the environment which can only rarely be found in Swarm Robotics.
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From local view, both Monte Carlo methods and temporal-difference learning are
promising. Because temporal-difference learning works better in on-line scenarios and
may be used to adapt behavior in dynamic environments, this technique will be of
greater interest for this thesis. Some improved techniques, like the use of eligibility
traces and function approximation, may even boost the utility of temporal-difference
learning.

The next chapter is based upon the background presented in this chapter. It targets
on an overview of existing mechanisms for Task Allocation in Swarm Robotics and on
the inclusion of new mechanisms using reinforcement learning techniques.
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Chapter 3

Mechanisms for Task Allocation
in Swarm Robotics

After defining Swarm Robotics and Multi Robot Task Allocation (MRTA) in chapter 2,
we can continue our investigation of Task Allocation in Swarm Robotics. This chapter
describes different mechanisms that can be used to solve the problem of MRTA in the
context of Swarm Robotics.

Because Task Allocation in Swarm Robotics is a subclass of MRTA, existing so-
lutions for this problem can also be used in Swarm Robotics, as long as they can be
successfully transferred into a swarm robotic context. Baghaei and Agah [BA02], for
example, present methodologies for MRTA that may be relevant for swarms. Unfortu-
nately, their technical report just enumerates different solutions in literature and lacks
a decent categorization of them. This makes it hard for designers to choose a solution
that fits their requirements. Creators of swarm robotic systems should at least know if
a mechanism focuses on the design of individual robots or on the coordination of the
swarm as a whole.

To overcome this lack of classification and to additionally relate mechanisms to
Swarm Robotics, the next section presents a new taxonomy, providing three fundamen-
tal design-classes for Task Allocation in the context of Swarm Robotics: Heteronomous,
Autonomous and Hybrid Task Allocation. Following these categories, the subsequent
sections present various mechanisms that can be found in the literature. Additionally,
this thesis suggests to use reinforcement learning for Task Allocation and proposes a
motivation-based approach.

3.1 Proposed Taxonomy

Finding a decent categorization of mechanisms for Task Allocation in Swarm Robotics is
not a trivial problem. At first sight, mechanisms could be classified by the type of swarm
needed for execution. Unfortunately, the taxonomy of Swarm Robotics, presented in
section 2.1.2.3, focuses on robotic abilities, like awareness and communication range,
but does not give a clue about how a mechanism utilizes the swarm.

From an architectural perspective, system designers discriminate between centralized
and decentralized approaches. Since a swarm of robots always has a strong decentralized
component, the terms centralized and decentralized are not very effective in the context
of Swarm Robotics.

31
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From a control architectural perspective, Lueth and Laengle [LL94] distinguish be-
tween centralized, distributed and decentralized control architectures in MRS:

Centralized: A central component makes decisions and transmits them to executing
components.

Distributed: The executing components follow a negotiation process to make a col-
lective decision.

Decentralized: Every executing component decides on its own.

Unfortunately, the terms centralized, distributed and decentralized are not self-
explanatory in the context of Task Allocation but ambiguous. For instance: in global
view, which is examining the swarm as a whole, the term centralized could describe the
fact that one single system component decides for all robots. In local view, which is fo-
cusing on an individual robot, the same term could define that the robot decides on its
own and does not distribute decision making about itself to other system components.

From the perspective of decision making, this thesis proposes three categories for
Task Allocation in Swarm Robotics: Heteronomous, Autonomous and Hybrid Task
Allocation.

Heteronomous Task Allocation: An executing agent in the swarm cannot decide
on its own which tasks to execute. From local or robot view, the allocation of
tasks is heteronomous.

Autonomous Task Allocation: Every robot in the swarm is able to decide on its
own which tasks to execute. From local or robot view, the allocation of tasks is
self-determined, making the robot autonomous.

Hybrid Task Allocation: Any combination of Autonomous and Heteronomous Task
Allocation is considered to be hybrid.

As shown in figure 3.1, the main categories of this taxonomy are derived from the
design-classes of MRS proposed by Lueth and Laengle [LL94]. The additional category
of Hybrid Task Allocation opens a new dimension, enabling the design of complex
systems using a combination of mechanisms from both Autonomous and Heteronomous
Task Allocation.

Remember that Multi Robot Task Allocation (MRTA) is an optimization problem
(cf. section 2.1.3), whereas Autonomous, Heteronomous and Hybrid Task Allocation
refer to principal design-classes for the solution of MRTA in Swarm Robotics.

In the following, Heteronomous Task Allocation is discussed first, because it is the
best explored category with respect to literature available. Second, Autonomous Task
Allocation, which basically is inspired by nature and subject of ongoing research, is
examined. Finally, Hybrid Task Allocation is considered, which offers great potential
for future research.

3.2 Heteronomous Task Allocation

Firstly, this section describes the basic concept of Heteronomous Task Allocation. Af-
ter that, it focuses on corresponding mechanisms and discusses both centralized and
distributed solutions.
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Figure 3.1: Proposed taxonomy for Task Allocation in Swarm Robotics, showing its
relation to design-classes in MRS.

3.2.1 Basic Concepts

In Heteronomous Task Allocation, robots generally execute tasks that another entity
of the system allocated to them. An individual member of the swarm is not allowed to
decide on its own what to do next.

The following summarizes the keystones of this type of Task Allocation: top-down
coordination, essential communication and the conflict of quality of solution vs. com-
putational complexity.

3.2.1.1 Top-Down Coordination

All solution methods in Heteronomous Task Allocation share a hierarchical structure,
which lasts for the allocation of at least one task. Coordination of robots is achieved
by using this hierarchy, defining two roles:

• leaders and

• workers.

Leaders are decision makers, who try to get a complete picture of the situation,
compute a hopefully optimal solution and allocate tasks to workers. Workers accept
the allocations and try to achieve the given tasks.

Designers creating a swarm of robots using Heteronomous Task Allocation basically
work in global view. Instead of focusing on single individuals, the swarm of potential
workers is observed as a whole and tasks are allocated in a top-down manner to the
best suited robots.

3.2.1.2 Essential Communication

As a leader has to communicate its decision to the workers, at least the leaders must
have the ability to send messages. This communication, of course, does not have
to be direct, it may be indirect, too. In the taxonomy of Iocchi et al. [INS01], direct
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Figure 3.2: Communication in Heteronomous Task Allocation: leaders are responsible
for decision making and provide tasks, whereas workers are responsible for executing
allocated tasks and optionally provide information.

communication refers to an explicit way of information exchange that makes use of some
sort of hardware (e.g. radio or infrared). Indirect communications refers to implicit
information transmission via the environment. For example: laying done a red stone
representing the task “go to the red zone” is indirect communication.

If the workers are also able to send messages, they can transmit relevant information
to the leader, e.g. a score defining the robot’s fitness for a specific task.

Figure 3.2 shows the basic communication ways in Heteronomous Task Allocation:
leaders provide the allocation of tasks, whereas workers (optionally) provide informa-
tion. Note that both leaders and workers are just roles. Thus, some of the depicted
roles may belong to the same physical robot.

3.2.1.3 Quality of Solution vs. Computational Complexity

Assuming that a leading robot possesses all relevant information about tasks, robots
and the environment’s dynamics, it can compute an optimal solution, e.g. via dynamic
programming (cf. section 2.3.2.1). As already mentioned in the context of reinforcement
learning, the computational effort may be infeasible, especially if the space of allocation
patterns (states) and intermediate (re)allocations (actions) is large.

Fortunately, the simplest form of MRTA, ST-SR-IA, which works with single-task
robots, single-robot tasks and instantaneous assignment, can be seen as an unweighted
scheduling problem, which is polynomial solvable [GM03]. Unfortunately, many vari-
ants of MRTA are NP-hard, especially when incorporating time-extended assignment.
For example: the Multiple Traveling Robot Problem [STBE09], which appears in multi-
robot exploration, is a variant of the well-known NP-hard Multiple Traveling Salesman
Problem. As a trade-off between quality and complexity, such problems are often ap-
proached by the use of heuristics, like estimating utility of each robot for each task
based on their distance [SB06, MDJ07, Das09].

In literature, much work that falls into Heteronomous Task Allocation is classified
as “explicit MRTA” [GM03], as the allocation problem of multiple robots is considered
explicitly. Top-down coordination and communication allow Heteronomous Task Allo-
cation to profit from centralized decision making, enabling leaders to calculate optimal
solutions. On the downside, the solution quality comes with high computational effort,
which is often faced by heuristics.
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The following sections discuss centralized and distributed mechanisms for Het-
eronomous Task Allocation.

3.2.2 Centralized Task Allocation

This category contains strategies for Task Allocation that rely on a single central deci-
sion maker. In general, strong centralization is used, which defines systems where the
leader role is fixed for an entire mission. Nevertheless, it is possible to weaken central-
ization and allow re-assignment of the leader role in case of failure, e.g. by election.
For the sake of simplicity, this thesis concentrates on strong centralization. Further
information about elections can be found in [Woo09, chapter 12].

As the hierarchy in Centralized Task Allocation is absolutely clear, the following
sub-categories concentrate on the accumulation of knowledge by the leader and on the
decision making process.

3.2.2.1 Omniscient Control

Omniscient control assumes that the decision making entity has all relevant information
on its own and does not need the workers for knowledge accumulation. This enables
the leader to compute an optimal allocation of tasks at every point of time. In chess,
for instance, a player has omniscient control, although he is only able to estimate the
opponent’s strategy.

In Swarm Robotics, omniscient control is almost absent, because embodied agents
are not expected to be omniscient. Robotic swarms generally consist of physical robots
that have limited sensory capabilities. Usually, no single robot is equipped with sensors
that provide an overview of the whole swarm.

Nevertheless, there may be systems, where a swarm is controlled by a single omni-
scient entity. For example: imagine a swarm robotic warehouse consisting of robotic
workers and a control center, which has access to an all-embracing sensory system cov-
ering all robots and to a communication systems for the allocation of tasks. Here, the
executing agents are not involved in decision making and fully reliant on a single entity.
Nevertheless, this single point of failure makes the system less “swarm robotic” (cf. the
yardsticks in section 2.1.2).

3.2.2.2 Blackboard Control

Blackboard control assumes that workers contribute to decision making by the addition
of relevant information to a global platform, called blackboard. The blackboard serves as
a knowledge base for the leader, who allocates tasks either directly by communication
with concrete workers or indirectly by publishing allocations on the blackboard. In the
latter case, workers need to continuously read public blackboard information.

In general, blackboard systems [Cor91] are a powerful tool for the distributed solv-
ing of problems, like planning and scheduling. Blackboard systems do not limit the
processing of information to a central decision maker.

In the context of Centralized Task Allocation, the blackboard features the most
accurate picture of the environment’s state currently available. Additionally it may
contain proposals from the workers, which helps a central entity to solve Task Al-
location. Both blackboard and decision maker can be seen as one entity providing
“blackboard control”, which is shown in figure 3.3.
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Figure 3.3: Blackboard control: Workers add information to the blackboard, which
is processed by the leader and results in the allocation of tasks. Additionally the
workers may receive information from the blackboard to get a clue which information
is needed.

An example for the use of blackboard control is the GOFER project [CCL+90],
which aims at the control of several dozen robots in an indoor environment. In GOFER,
each worker communicates with a central task planning and scheduling system (CTPS).
The CTPS knows the goals of the mission, generates a plan structure to achieve these
goals and supplies all available robots with pending goals and plan structures. In
reaction to this announcement, workers make proposals which are iteratively reviewed
by the decision maker. The CTPS keeps track of an optimal solution and finally, when
no more proposals appear, allocates the tasks accordingly.

If accurate information about goals, tasks, robots and the environment is available,
Centralized Task Allocation can basically focus on planning and scheduling. In real
world applications, environments tend to be dynamic which results in unexpected task
execution times. The offset between expected and actual execution times leads to sub-
optimal performance. By gathering information about the progress of each task the
decision maker is able to proactively re-plan in order to update previous allocations
that became inefficient. Further information about proactive re-planning for multi-
robot teams can be found in [Sel09].

3.2.2.3 Centralized Reinforced Control

Up to this point, all presented centralized control solutions rely on the existence of an
algorithm for mapping a rich state signal to an optimal allocation of tasks. In many
scenarios, such an algorithm cannot be defined a priori because the leader is not able
to sense all information needed for an optimal allocation.

For example: in a foraging scenario, the global mission is to gather food from the
environment as fast as possible, but without unnecessarily wasting energy by moving
around. Assume that the leader robot stays in the delivery zone, where it is able
to observe the amount of food collected by the swarm, but unable to sense food in
the environment. In other words: the leader does not know how many robots can
efficiently forage but it is able to learn from the observed collection rate. In this
case, reinforcement learning can serve as an adaptation mechanisms for the number of
allocated foragers.
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Adaptation. In many cases, reinforcement learning is used to adjust parameters of
an a priori imperfect allocation strategy. Learning in general is a powerful tool for
adapting decision making to the actual environment, including group dynamics like
physical robot interference, which is often hard to predict in advance.

Strens and Windelinckx [SW05] investigate the inclusion of reinforcement learning
into a scheduling system. In their work, a central planner has to allocate robots to
tasks that arise continuously at arbitrary locations. Their hybrid planning/learning
approach extends planning quality by the incorporation of robot positioning. Plans
that cluster robots are learnt to be less efficient because the robots give up coverage of
the environment.

Paquet et al. [PCdDB10] use reinforcement learning in the context of a RoboCup-
Rescue mission. In their work, FireBrigade agents are commanded by a central FireSta-
tion agent to efficiently extinguish fire at different locations. The FireStation initially
does not know how many robots are needed at each fire area. By observing which kind
of building, e.g. a wooden one, demands more attention than others, the central deci-
sion maker is able to adapt its allocation strategy, allocating more robots to difficult
fire sites.

Control. This thesis goes one step further and suggests to use reinforcement learning
directly for Task Allocation. By explicitly learning which tasks to instruct under which
environmental circumstances, the central entity is able to optimize the process of allo-
cating tasks on its own. As long as the number of actions (i.e. ordering tasks) and the
number of experienced states (i.e. some kind of processed sensory data) is sufficiently
low, the leader is able to explore its possibilities in an acceptable amount of time. This
approach seems to be very promising, especially for division of labor, which aims at
managing an efficient distribution of a small set of tasks to a high number of workers.

The idea of learning Task Allocation is not new. Research in Multi Agent Sys-
tems already investigated the use of reinforcement learning as a mechanisms for task
assignment. For example: Abdallah and Lesser [AL06] consider Task Allocation as
a game where mediator agents have to allocate tasks to different servers. Although
their learning algorithm is aimed at the coordination of multiple leaders, this example
demonstrates that learning from observed rewards is a powerful mechanism to control
a leaders task allocation strategy.

This thesis proposes to use Sarsa(λ), which is a temporal difference learning control
algorithm using eligibility traces (cf. section 2.3). By this, the decision maker is able
to adapt its allocation strategy on-line. The most difficult part in using this type of
Task Allocation mechanism is the definition of proper rewards, which have to ensure
that the swarm is driven to the accomplishment of the mission.

Omniscient control, blackboard control and centralized reinforced control are ex-
ample strategies for solving MRTA from the perspective of a central leader. Because
centralized solutions are relatively uninteresting for Swarm Robotics due to the creation
of a single point of failure, this overview of different approaches shall be sufficient, al-
though there may exist more strategies for specific scenarios.

Blackboard control already opened a path to distributed problem solving. The idea
of all robots contributing to decision making can be extended by spreading the power
of actual decision making to more than one robot. This approach is considered in
Distributed Task Allocation.
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3.2.3 Distributed Task Allocation

In order to avoid a single point of failure, Distributed Task Allocation allows the swarm
of robots to negotiate about the allocation of tasks. Generally, this is done by dynam-
ically granting the leader role when needed. From the perspective of the executing
agent, the allocation of tasks remains heteronomous, because the worker has to comply
with the leader’s decision.

3.2.3.1 Market-based Approaches

The most prominent approach for Distributed Task Allocation is the use of a market-
based system, where tasks are considered to be goods and robots bargain for who will
get each task by bidding with virtual money.

The following paragraphs present the auction mechanism and some well-known
frameworks using a market-based approach. A comprehensive survey and analysis of
market-based multi-robot coordination can be found in [KZDS05].

Auctions. In market-based systems, the most important mechanism for negotiation
is the auction. Every auction consists of three basic phases:

1. announcement,

2. bidding and

3. assignment.

In the announcement phase, a temporal leader, called the auctioneer, offers one or
more tasks for negotiation. After that, workers bid on the announced tasks. Finally,
when all bids are gathered, the auctioneer assigns the tasks by comparing the received
bids and by maximizing the total profit.

Depending on the number of items announced, the following different kinds of auc-
tions can be identified:

Single-item auctions offer one task at a time.

Multi-item auctions offer a set of tasks that is auctioned as a whole.

Combinatorial auctions offer a set of tasks that may be split to multiple bidders.
Bids can be made for any subset of the offer.

In general, single-item auctions are preferred, because multi-item auctions produce
inferior solutions and combinatorial auctions are often intractable with respect to com-
putational and communicational requirements. [KZDS05]

For example: The Centibots system [OVM05] (cf. section 2.2.3.1) organizes its
robots in teams featuring a leader, called dispatcher. Ready team members get a job
list from their dispatcher, who manages an auction about all available tasks. In response
to the job list, each robot makes a bid representing its preferences with respect to its
location and battery level. The auctioneer can then allocate the tasks in preference
order.

The contract net protocol (CNP) [Smi80] is a high-level protocol for negotiation
among agents, providing distributed control of cooperative task execution. Basically it
describes an auction as presented above and thus serves as a basis for most concrete
implementations of market-based systems in literature.
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MURDOCH. Gerkey and Matarić [GM01] present a publish / subscribe system
using a simple auction. In MURDOCH, all robots are listening for tasks. As soon as a
robot finds a task it starts a one-round single-item auction by announcing the task. In
response, every individual capable of performing the task calculates a score defining its
fitness for the task and sends an appropriate broadcast message. As MURDOCH relies
on a sufficient communication system, the usually following announcement message can
be skipped: the participating robots already know who is best suited for the task. The
winner simply starts to do the job without waiting for an acknowledgement.

MURDOCH can also be described as an “instantaneous blackboard system”. By
broadcasting, tasks are published on a virtual blackboard, allowing all relevant robots
to subscribe for task execution. As soon as no more bids can be expected, the robots
check their accumulated blackboard information and the winner executes the task. Af-
terwards, all information about the task can be deleted, because the winner is expected
to successfully accomplish the task.

TraderBots. Dias [Dia04] describes another market-based approach. In TraderBots,
the robots bid on tasks on the basis of cost, like the expected time to accomplish a
task. The bidder that is able to offer the lowest cost is contracted to fulfill the task.
In contrast to MURDOCH, robots are allowed to trade assigned tasks. By frequent re-
contracting, imperfect plans can be resolved and emerge to an optimal solution. This is
especially interesting in dynamic environments, where it is likely that contracts cannot
be hold, because real costs turn out to be higher than the estimated costs.

In TraderBots, every robot tries to maximize its personal profit. The accomplish-
ment of tasks costs some virtual money, but includes a revenue. By continuously com-
peting for tasks and possibly cooperating to mutually achieve higher profit, binding
contracts are made and Distributed Task Allocation emerges from the virtual economy.
This strategy is known as the free market approach, which originally was introduced
by Stentz and Dias [SD99].

DEMiR-CF. Sariel et al. [SBS06, Sar07, STBE11] propose a generic framework,
called DEMiR-CF, which is designed for distributed multi-robot cooperation and ba-
sically uses a single-item auction. DEMiR-CF, which is a shortcur for “Distributed
and Efficient Multi Robot - Cooperation Framework”, is able to reallocate tasks and
reorganize team members if necessary. Additionally, precaution routines are used to
respond to various failure cases, like robot breakdown. Many conflicts resulting from
missing knowledge are resolved by observing the standard auctioning process. If, for
instance, a robot does not know that a task is already achieved, it will announce an
auction resulting in other robots informing the first one about its fault.

The basic case study of DEMiR-CF is a naval mine countermeasures mission. There
are two types of robots in the system: UUVs, which are able to detect mines in a radius
of 30 feet but unable to identify them, and crawlers, who can both detect and identify
but only in a radius of 20 feet. In consequence, UUVs are used for exploration and
crawlers are used for identification. As a result, tasks of crawlers are created and
announced by explorers.

Market-based approaches for Task Allocation are still subject of ongoing research.
For example: Dasgupta [Das09] recently proposed the introduction of dynamic bids,
which consist of lower and upper bound prizes robots are willing to pay. By not paying
the full prize in advance, like not promising to achieve a task in the minimal time possi-
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ble, the robot may be able to re-contract without breaking its made agreements. Even
more recently, Cao et al. [CLIA10] considered complex tasks that can be organized
in a tree-based formalism containing task-ordering. Because bidding for all possible
portions of the tree may cost too much bandwidth, they propose to limit the number
of bids by comparing approximated lower bounds of the tasks with reserve prizes and
skipping irrelevant bids. De Weerdt and van der Krogt [dWvdK06] showed that auc-
tions can result in arbitrarily bad solutions in the worst case when recontracting and
multilateral deals are not allowed. Although, in this case, they proofed that egoistic
decisions or imprecise information about task costs of other agents can result in poor
allocations in theory, this circumstances seem to be very rare in practice.

3.2.3.2 Other Distributed Approaches

Beside the outstanding market-based approach, literature features many more interest-
ing methodologies for Distributed Task Allocation.

Virtual Blackboard. As already mentioned, blackboard systems [Cor91] are a pow-
erful tool for distributed problem solving. Blackboard control, which is a centralized
approach presented in section 3.2.2.2, needs one central leader to manage a global black-
board. By giving every robot a private blackboard and using broadcast messages to
influence other blackboards, a global virtual blackboard can be formed. If all individ-
uals in the system use the same algorithm for decision making (with respect to who is
allowed to execute which task) and communication is reliable, then all robots will come
to the same conclusion and successfully allocate tasks without having a concrete leader.
In this case, the blackboard system itself takes the leader role, since every robot has
to comply with its inherent logic. Examples for such control can be found in [ØMS01]
and [BC07].

Opinion Dynamics. Montes de Oca et al. [MdOFM+10, MdOSBD10] investigate
how an opinion dynamics model can be used to achieve decentralized decision making.
In their work, robots have to decide frequently between two different foraging sources
without knowing which one can be reached faster and thus is the better one for efficient
mission accomplishment. Every robot has an individual opinion about which task is
better. At start, this opinion is purely random. Before allocating one of the two
possible tasks, each robot has to participate in a negotiation process: a group of three
ready robots is picked at random and their opinion is aggregated by a decision rule,
e.g. majority. After that, each robot of the group allocates the task corresponding to
its new opinion. Because robots with the correct opinion, which is choosing the shorter
path, return sooner, they are included in opinion aggregation more often. Thus, they
have greater influence on the swarm’s opinion.

This technique is very powerful for spreading opinions about time efficiency without
actively observing any durations. Although opinion dynamics are not sufficient for
controlling a complex task allocation process on their own, they can contribute to a
better task allocation in a very elegant way.

Note that the introduction of opinions is already a step towards Autonomous Task
Allocation. Robots that follow an opinion about which task is best to take are able to
allocate tasks for themselves. But as long as opinions are a result of a dictated negoti-
ation process, the use of opinion dynamics falls into Heteronomous Task Allocation.
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BLE. Werger and Matarić [WM00] present a formalism called BLE, which is a short-
cut for Broadcast of Local Eligibility. In BLE, robots broadcast local eligibility values
for all their different behaviors. The robot who is locally best suited for a specific
behavior will notice that it has got the highest eligibility value of all robots in commu-
nication range. Therefore, it will execute the behavior. Up to this point, this is very
much the same as a local version of MURDOCH with its auction-algorithm providing
an “instantaneous blackboard”. In contrast to MURDOCH, BLE features the active
inhibition of a behavior in other robots. Instead of relying on all robots knowing that
one is already executing a behavior, an explicit message which deactivates the behavior
in other robots is broadcasted locally.

The use of a behavior-based approach like BLE is another step towards Autonomous
Task Allocation. By allowing robots to control their behavior they are able to decide
their next step on their own. In BLE, Task Allocation still remains heteronomous,
because the received combination of local eligibility values and inhibition messages
from other robots explicitly dictates behavior activation. The robots are still unable to
decide their next action autonomously.

3.2.4 Relevance for Swarm Robotics

Heteronomous Task Allocation has some strengths and weaknesses. On the one hand,
the use of leaders offers the potential to find (local) optimal solutions for Task Allo-
cation. Additionally, from the designer’s perspective, it is relatively easy to program
coordinated behavior, because coordination is achieved in a top-down manner and
leaders are allowed to control other robots directly. On the other hand, in most cases
optimal solutions are bought dearly, as they require high computational and / or com-
municational effort.

Centralized Task Allocation seems to be the least relevant approach for Task Al-
location in Swarm Robotics. Omniscient control is unrealistic, because even if it is
possible to equip a central leader with all-embracing sensors, algorithms heading for an
optimal solution will not be scalable and therefore fail for a large swarm of workers.
Although blackboard control distributes the knowledge accumulation, it still emphasizes
the central processing of massive amounts of data. Additionally, is is very difficult to
provide algorithms that include all possible situations appearing in a dynamic environ-
ment. Those dynamics are especially hard to predict, when the swarm is contributing
to changes in the environment and featuring group dynamics.

To take up the cudgels for Centralized Task Allocation, this thesis proposes to use
on-line reinforcement learning in a central entity. Instead of directly targeting optimal
solutions, centralized reinforced control encourages adaptation at run-time, driven by
live experience made in a previously unknown environment. By limiting learning to a
single robot, designers can still concentrate on centralized decision making and do not
have to worry about all robots making decisions in parallel.

All centralized approaches have in common that they create a single point of failure.
Using the yardsticks presented in section 2.1.2, which are defining how swarm robotic
a system is, this risky design conflicts with yardstick (I), postulating the independence
from addition and removal of individuals. Nevertheless, Centralized Task Allocation
can still be used in Swarm Robotics if the central decision maker can be replaced easily
and thus the chance of swarm failure is reduced.
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Distributed Task Allocation tries to increase scalability by distributing control in
the whole swarm. This reduces the computational effort for single robots. On the
downside, negotiation about task allocation increases the amount of communication
needed, and the quality of solution will most likely suffer, at least initially.

The most basic mechanism in Distributed Task Allocation is the auction. Auctions
are used to announce tasks and to accumulate task utility and / or cost values to make a
proper allocation afterwards. In general, market-based approaches are very well suited
for single-execution tasks that originate from accomplishment goals: every time such
a task emerges from the environment, robots negotiate about who will do the job. In
contrast, maintenance goals define tasks that often have to be accomplished frequently
by a certain proportion of the whole swarm. In this division of labor case, auctions are
less efficient, because they overact by continuously announcing the same task.

Distributed Task Allocation can be very efficient in clearly arranged scenarios. Es-
pecially when tasks are concrete one-time jobs and the best suited robot can be derived
by comparing scores, market-based approaches are very promising. Unfortunately, the
number of robots in the swarm – or at least in communication range of one robot –
has still a great influence on performance. Although Distributed Task Allocation may
not be applicable for large swarms as a whole, it still has high potential as a local
subroutine.

3.3 Autonomous Task Allocation

In contrast to Heteronomous Task Allocation, where an individual is controlled by
some kind of leader, Autonomous Task Allocation gives every single robot the ability to
allocate its tasks on its own. This section describes the basic concepts of this approach
and presents different mechanisms that can be used.

3.3.1 Basic Concepts

Most mechanisms for autonomous coordination of multiple robots are inspired by na-
ture. Especially when focusing on swarms, nature offers interesting subjects for study.
Typically, designers emulate techniques from ant or bee colonies because social insects
are perfect role models for artificial swarms.

Autonomous Task Allocation is based on the keystones bottom-up coordination,
limited communication and the conflict of simplicity vs. quality of solution which are
presented in the following.

3.3.1.1 Bottom-Up Coordination

In Autonomous Task Allocation, system design is limited to a local view, which focuses
on single entities. Although individuals select their tasks autonomously and therefore
do not follow a leader, complex behavior can still appear. From designer’s perspective,
the emergence of coordinated behavior from individual actions is called bottom-up co-
ordination. The designer has to program each robot’s action selection in a way that
results in the desired behavior at swarm level.

Even very simplistic rules can result in complex behavior. Langton’s ant, first
appearing in [Lan86], is a perfect example for an individual showing complex behavior
while following very simple rules. Langton’s ant lives in a cellular world, consisting of
white and black cells. When the ant stands on a white cell, it turns 90 ◦ to the right,
switches the color of the cell to black and moves to the cell in front of it. In contrast,
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Figure 3.4: Langton’s ant after 11000 steps. The ant has already started to build the
“highway” pattern out of the apparently chaotic behavior before. Image is taken
from Wikimedia Commons∗.

∗ http://commons.wikimedia.org/wiki/File:LangtonsAnt.png

standing on a black cell results in turning 90 ◦ to the left, switching the color to white
and again leaving the cell by taking a step forward. Starting on a completely white
grid, the ant shows seemingly chaotic behavior for about 10000 steps. After that, it
appears to build a “highway” out of the chaos (cf. figure 3.4). The repetitive pattern
constructing the “highway” consists of 104 steps that repeat infinitely.

Similar to Langton’s ant, the movement of single real ants can be very confusing at
first sight. Watching an ant colony for some time reveals that the simple small actions
of single ants form to reasonable patterns on the swarm level. For example, ant trails
can be spotted that lead to food sources.

In the context of swarms, the emergence of complex behavior from simple individual
actions is often called the result of swarm intelligence (SI). Even if every single mem-
ber of the swarm is “dumb” with respect to planning and coordination capabilities, the
swarm as a whole can still appear to be intelligent. Labella [Lab07] states that “the ma-
jor contribution from [swarm intelligence], or better its application to robotics, Swarm
Robotics [...], is to clearly show that the use of communication, planning, mapping (or
any other explicit representation of the environment) are not a necessity.”

3.3.1.2 Limited Communication

In Autonomous Task Allocation, communication plays a minor role. Many mechanisms
solely rely on indirect communication via the environment or no communication at all.
Each robot selects actions based on its own perception of the environment.

Nevertheless, some form of indirect communication will always be present. Since
physical robots are manipulating their environment by the execution of tasks or simply
by their presence, the environment’s state includes signs of each robot’s actions, which
can be sensed by other robots. If the trace of previous actions stimulates the selection
of future actions, the resulting behavior is called stigmergic. Stigmergy is a form of
indirect coordination that can be found in many social insects. For example: termites
form surprisingly complex nests by iteratively placing available building material on top
of each other. By putting some pheromone into the building material, other termites
are animated to continue building at the same structure. Each individual perceives the
signs of other workers and reacts to them. This local behavior emerges the construction
of a typical termite nest although no planning is involved and communication is limited.

http://commons.wikimedia.org/wiki/File:LangtonsAnt.png
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3.3.1.3 Simplicity vs. Quality of Solution

Inspired by social insects, Autonomous Task Allocation counts on simplistic individuals
that do not necessarily know the goals of the swarm. The global mission is achieved
by coordinated behavior that emerges from multiple robots acting autonomously.

Although nature evolved very efficient solutions, the solution quality is never opti-
mal. This is a direct result of relying on individuals with a limited perceptual range
that does not allow to oversee the whole swarm. Inevitably, the number of workers
executing a specific task will not be minimal. If there was a single controlling entity,
the swarm could perform better. In fact, the absence of a single point of failure and the
inherent redundancy are intended features that make the swarm more robust, especially
in dynamic environments.

In Autonomous Task Allocation, the quality of solution is very dependent on the
subtlety of the individuals’ design. If designed properly, an efficient solution for the
Task Allocation problem can emerge. As already demonstrated by the example of
Langton’s ant, even very simple rules for action selection can result in unexpected be-
havior. Because of this, simulation is a very important tool in the design of mechanisms
for Autonomous Task Allocation. As most methods are driven by a set of variables
that have to fit the concrete mission of the swarm, parameters are first adapted in a
multitude of simulation runs before using them in a real world experiment.

In some cases, the outcome of autonomous mechanisms can also be predicted by
the use of mathematical models. These can help to understand dynamic task alloca-
tion before implementation and therefore save costs in development. Unfortunately, for
complex systems, mathematical models are not easy to define and are often based on
assumptions that are not valid for real world scenarios. Nevertheless, some mathemat-
ical models have already been proposed, at least for the prominent domain of foraging
[LJGM06, CD07].

Autonomous Task Allocation relies on the emergence of coordinated behavior from
decentralized decision making. In consequence, every single robot has to allocate its
tasks in a way that inherently drives the whole swarm to mission accomplishment. The
following sections present different mechanisms for Autonomous Task Allocation by
focusing on the type of control used in each autonomous robot.

3.3.2 Rule-based Control

In rule-based control, each agent is equipped with a set of rules defining which action
to take under which circumstances. Those rules are bounded to the robot’s view which
includes sensory data and potentially accumulated knowledge or belief. By following
its personal rules, each robot autonomously allocates tasks for itself.

In literature, approaches in this category are often related to behavior-based systems.
As the name suggests, each robot manages a set of behaviors. In the context of this
thesis, behaviors are very much the same as tasks. There is only a small difference that
results from the point of view: tasks are considered to be abstract descriptions what
a robot should do without describing how to do it, whereas behaviors are very much
related to a course of concrete actions. In other words: the term task is used from the
viewpoint of a leader, who wants to assign a job, whereas behavior defines a strategy
that is followed by a robot to execute a given task. The term behavior is also used
from the viewpoint of a watcher, who observes different kinds of activity.
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3.3.2.1 Basic and Complex Behavior

There are two different kinds of behavior: basic and complex behavior. Each robot is
primarily described by its basic behavior set. These behaviors are unique, independent
from each other and none of them can be described by the others. From the viewpoint
of rule-based control, which aims at Task Allocation, basic behaviors are analog to
atomic tasks: there are no smaller units of control.

Complex behaviors are pre-described strategies that use a combination of basic
behaviors. Instead of having to deal with atomic tasks, rule-based control is then able
to allocate complex tasks that can be accomplished by the activation of a corresponding
complex behavior.

For example: Matarić [Mat95] implements the complex high-level behavior forag-
ing by switching between the basic behaviors avoidance, dispersion, following, homing
and wandering under appropriate sensory conditions. Additionally, the rudimentary
abilities to pick up and drop items were used.

The repertoire of abilities that rule-base control works with is defined by both basic
and complex behaviors. Because the assignment target is evident, rule-based control
– and Autonomous Task Allocation in general – allocates tasks by the activation of
corresponding behaviors.

Rule-based control builds upon a given set of strategies to choose from, where each
strategy is a combination of basic behaviors. For example: a foraging robot might be
able to apply a foraging or resting behavior. Rule-based control defines when to switch
between these two strategies. From this point of view, it is irrelevant that foraging
is a complex behavior consisting of multiple basic behaviors. It is assumed that the
strategy is already implemented, possibly by a rule-based approach.

3.3.2.2 Examples

This section presents some examples from literature that use a rule-based approach to
control Task Allocation.

Aggregation. Schmickl et al. [STM+09] present a very simplistic rule-based ap-
proach. In their work, a robot swarm has the mission to aggregate in areas with
high light intensity. Each robot follows a simple algorithm, called BEECLUST. By
default, a robot performs a random walk. Every time it collides with another robot,
it stops, checks the light intensity and waits for a time dependent on the measured
illuminance before switching to random walk again. This small set of rules is sufficient
for clustering the swarm in areas with high light intensity. As the name suggests, the
BEECLUST algorithm is inspired by the behavior of bees. Bees tend to aggregate in
spots with comfortable temperature. However, this behavior can only be observed in
groups of bees: single bees do not stop at any location on their own. Clustering can
only emerge if multiple bees are present for some kind of interaction. Collision with
other bees seems to be the only form of communication that drives this behavior.

Chain Formation in Foraging. Nouyan et al. [NGB+09] demonstrate that a fixed
rule set can be used to create complex behavior. In their foraging scenario, robots
have to find a heavy food item and collectively retrieve it to the nest. This mission is
achieved by the formation of a robot chain that originates in the nest. Robots follow a
set of conditions that trigger transitions between different behaviors, like search chain,
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Figure 3.5: Foraging via chain forming: each robot follows a set of conditions that
trigger transitions between different behaviors. In the left picture, robots have built
two short chains that both do not yet reach the food item in the left corner of the area.
In the right picture, one long chain to the food item could be created and two robots
are already attached for transportation. Both images are taken from [NGB+09].

join chain, explore chain, assemble and transport target. Figure 3.5 shows two stages
in a trial with twelve robots. The transitions between some behaviors related to chain
maintenance are driven by the probabilistic parameters Pin and Pout, which define the
probability for joining and leaving a chain respectively. Because of their influence on
chain formation and stability, these parameters have to be tuned very carefully to fit
the specific environment.

Light-based Task Allocation. Ducatelle et al. [DFDCG09b, DFDCG09a] use a
rule-based approach as a sub-strategy in a larger task allocation mission. In order to
allocate a multi-robot task, special robots, called eye-bots, have to gather a specific
number of foot-bots around them. Beside an approach using infra-red communication,
Ducatelle et al. propose a light-based mechanism that controls the aggregation of a
sufficient number of foot-bots. The eye-bot announces the multi-robot task by emitting
a number of yellow lights proportional to the task size.

The light-based approach utilizes attraction and repulsion to achieve appropriate
clustering. Each foot-bot is driven by simple rules: if the robot senses yellow lights, it
heads towards the nearest one, if it senses green lights in a short range, it is repulsed
from them. Because foot-bots emit a green light, they indirectly disadvise other robot
to head to the same target. At the eye-bots location, all present robots spread out
and “dock” at different yellow lights. This helps to accumulate the correct number of
robots needed for the task.

Whenever attraction and repulsion is sensed at the same time, an internal frustra-
tion level is raised. If the frustration reaches a fixed threshold, the foot-bot executes
an escape movement, which drives it away from the attraction source and enables it to
explore other parts of the arena. Figure 3.6 demonstrates the influence of attraction,
repulsion and frustration in a simulated example.

Rule-based control is a very powerful mechanism to determine Task Allocation for
single robots. This is advantageous and disadvantageous at the same time. On the one
hand, designers have full control over the robots’ behavior. Thus, they can program
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Figure 3.6: Light-based control: robots are attracted by yellow lights and repulsed from
green lights. In the left picture, the robot is attracted and repulsed at the same time.
In the right picture, the robot’s frustration level for sensing attraction and repulsion
at the same time has reached a fixed threshold, which forces the robot to execute an
escape movement away from the attracting yellow lights. Both images are taken from
[DFDCG09a].

interacting rules that emerge a desired swarm behavior. On the other hand, desired
behavior is hard to achieve by the definition of simple rules. In most cases, the rules
are tailored to the concrete global mission and include the specification of complex
behaviors. As a result, rule-based systems as a whole are generally highly specialized
and rarely reusable in other missions and scenarios. Note that sub-sets of the rules,
like the descriptions of complex behavior, are very well reusable.

Rule-based control can be seen as a superclass for all forms of Autonomous Task Al-
location, because every mechanism can be described by a set of rules. It is even possible
to simulate Heteronomous Task Allocation by the definition of communication rules.
Therefore, this thesis proposes to use the term rule-based control only for rule-based
systems that are designed from scratch without using a mechanism that automatically
defines a set of rules. From designer’s perspective, the definition of rules has to remain
tractable, of course.

Since rule-based control is a very unspecific approach to Autonomous Task Allo-
cation, the following sections cover more concrete mechanisms. First, threshold-based
control is discussed, which switches between two tasks by the use of a special parameter
called threshold. Second, probabilistic control is presented, which chooses from a set of
tasks based with respect to given probabilities. Finally, decentralized reinforced control
is proposed, which adapts action selection policies based on experienced rewards.

3.3.3 Threshold-based Control

In threshold-based control, the self-allocation of a task basically depends on a specific
parameter called threshold. In general, some stimulus is frequently incremented by
task-relevant events. As soon as the stimulus reaches or passes the threshold, the
execution of a corresponding task is triggered.

An example for the use of a threshold was already given in rule-based-control: in the
light-based approach of Ducatelle et al. [DFDCG09b, DFDCG09a], each mobile robot
is equipped with a frustration level that is raised when the robot is synchronously
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exposed to attraction by yellow lights and repulsion from green lights. Passing a fixed
threshold triggers an escape movement that drives the robot away from the source of
attraction (cf. figure 3.6).

Although the principle of threshold-based approaches always remains the same, var-
ious implementations and interpretations are possible. In some cases, the threshold is
an absolute value that controls which exact stimulus is needed to activate the execu-
tion of the corresponding task. In other cases, the threshold appears as a parameter
of a function that defines probabilities dependent on some stimulus. This enables the
threshold to control the influence of stimuli at a finer grain. The first category is based
on the activation threshold model and is described next.

3.3.3.1 Activation Threshold Model

In the activation threshold model [KB00], each robot manages private fixed thresholds
that define the amount of stimulus needed for task activation. After activation the
stimulus eventually drops below the threshold enabling the robot to switch to other
tasks that demand attention.

For example: Krieger and Billeter [KB00] apply a simple form of this task allocation
method to a foraging scenario. The global mission of the swarm is to keep the nest-
energy at a safe level by gathering items that increase the nest-energy on retrieval.
There are two tasks robots can select from: foraging and resting. Both tasks need
energy but resting is comparably low in cost. As a result, resting robots are draining
less energy than unsuccessful foragers. To avoid unnecessary use of energy, robots follow
a passive strategy: each robot continuously checks the amount of energy available in
the nest and starts foraging as soon as the energy drops below an activation threshold.

By giving each robot a private activation threshold, not all robots start to execute a
specific task at the same time. In the foraging example, a proper dispersion of activation
thresholds results in robots having different opinions about which nest-energy value
is critical and therefore needs their attention. This technique enables the swarm to
maintain a proper division of labor although each threshold is fixed, equally interpreted
and never changed.

Activation thresholds are very easy to use in scenarios with only two tasks to choose
from. By declaring one task to be the default task and introducing a single activation
threshold for the temporally constrained activation of the other task, the task allocation
process is straightforward.

If there are more than two tasks controlled by activation thresholds, some additional
rules have to be defined. Otherwise it would be unclear which task to execute if
multiple thresholds are passed concurrently. One way to make things clear is to define
a precedence order for task activation. This ordering can be either fixed or dynamic.
By comparison of the exaggerated stimuli, the most urgent activity may be found.

3.3.3.2 Adaptive Threshold Functions

As already mentioned, thresholds can be used as control parameters for probabilistic
functions. Strictly speaking, Task Allocation is then controlled by the function and not
by the threshold. But as long as the threshold controls the reactivity to a stimulus and
thus describes some vague point where the allocation of a task gets very likely, it is still
a threshold-based approach. In the context of this thesis, a threshold function maps a
stimulus s to a probability p(s) by the incorporation of a corresponding threshold t.
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One of the simplest threshold functions can be defined by translating the activation
threshold model into a probabilistic function. Since probability switches from 0 to 1 at
the fixed activation threshold t, the function can be formulated as follows:

p(s) = 1−max(sgn(t− s), 0) =

{
1, s >= t

0, else
(3.1)

By allowing a robot to change the activation threshold t, the threshold function gets
adaptive. For example: assume a blind baby bird that gets more and more hungry and
eventually begins demanding food. The biddy does neither know how many other birds
are in the nest, nor does it know how long its mother will need to bring a sufficient
amount of food. In this scenario, the stimulus s increases every time step the bird feels
any amount of hunger while not demanding food. The threshold t then represents the
time to wait before demanding food. After mother bird has come back and has fed
her children, the biddy checks if it is still in a hungry state. In this case the biddy
reduces its waiting time, starting to demand food more early next time. Otherwise it
may increase the threshold, because it might have been overfed. This scenario covers
both dynamic environments and group dynamics.

Inspired by the work of Brutschy [Bru09], this thesis proposes to use a shifted sig-
moid curve, which can be seen as a flattened version of the strict activation function 3.1.
By using the logistic function, which is the most common sigmoid curve, as a basis, the
probability function can be defined as follows:

p(s) =
1

1 + e−θ(s)
with θ(s) =

6

r
(s− t), (3.2)

where t is the threshold defining the amount of stimulus s needed to get a probability
of 0.5. The constant r is used to control the steepness of the curve. Because the logistic
function basically changes in the interval [−6,+6], r can be seen as the radius around
the threshold where the probability rises from approximately 0 to approximately 1.

Figure 3.7 shows two sigmoid curves with example values for r in comparison to
the original logistic function. For low values of r, the sigmoid curve behaves very much
the same as the strict activation function 3.1. For high values of r, the transition gets
more fluid and robots will manage a small probability for starting the task even when
the stimulus s is low. Note that the probability will never reach 0 or 1. In theory, there
is always a small probability left to execute or ignore the task respectively.

By increasing the threshold t, the logistic curve is shifted to the right. As a result,
the stimulus has to reach higher values to have the same influence on probability. As
soon as the threshold is passed, the task activates with a chance of at least 50 %. Thus
its execution gets likely, which corresponds to the general idea of threshold control.

In their study of ants, Bonabeau et al. [BTD96] have chosen a similar function to
model the probability of reacting to a stimulus:

p(s) =
s2

s2 + t2
. (3.3)

Again, the threshold value t defines the amount of stimulus s needed to activate
the task with probability p(s) = 0.5. Bonabeau et al. use this model to explain the
behavior of ant colonies consisting of two castes: minors and majors. As long as enough
minors are present to execute a specific task frequently, the majors remain inactive with
respect to the task. As soon as the minors count is reduced, the task is not executed at
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(a) logistic function (b) r = 2 (c) r = 1

Figure 3.7: (a) The logistic function. (b) + (c) Two logistic probability functions for
task activation (cf. equation 3.2) with different values for the radius r. The threshold
parameter t = 2 defines that probability 0.5 is reached at s = 2.

a sufficient rate, which raises the stimulus and results in the majors getting involved.
This is regarded as a result of different threshold levels in the two castes.

3.3.3.3 ALLIANCE

ALLIANCE [Par98] is a very prominent framework using a threshold-based approach.
Each robot has a set of behaviors – tasks – that can each be activated by a corresponding
stimulus called motivation. Motivation is basically increased by an impatience rate,
which is fast by default. If any robot has already started the task, the impatience rate
is low, at least as long as the other robot fulfills the task in reasonable time bounds.

While the robot increases its motivation for a task, each time another robot starts
to execute the task, the motivation is reset to zero. Other conditions for resetting the
stimulus are missing sensory feedback, another activity that suppresses activation and
acquiescence. Acquiescence indicates that the robot gives up, either because it wasn’t
able to achieve the task in a reasonable time or because another robot took the task
assuming that a standard achievement time was exceeded. In summary, the motivation
for a specific task is updated as follows:

mt = [mt−1 + impatiencet]

∗ sensoryFeedbackt // 0 if task is not applicable

∗ activitySuppressiont // 0 if other task is active

∗ impatienceResett // 0 if other robot has started the task

∗ acquiescencet, // 0 if there is a reason to give up

where the index t denotes the current time step, mt−1 is the motivation from the last
time step and impatiencet is either a slow or fast impatience rate. In order to avoid a
reset of motivation to 0, all binary variables – sensoryFeedbackt, activitySuppressiont,
impatienceResett and acquiescencet – need to be 1.

ALLIANCE is designed to work in fault-prone environments. Each robot watches
the performance of other robots and takes the task if the robot does not perform well.
By this, failures in robots are detected and all tasks are continuously executed as long
as the sensory feedback allows the tasks’ execution.

On the downside, ALLIANCE introduces many variables that have to be adapted
carefully to the specific mission. In particular, the impatience rates must conform the
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task execution times of the robots. To get a grip on this problem, the ALLIANCE
framework is extended by a learning and adapting approach. In L-ALLIANCE [Par97],
all robots monitor their own and the other robots’ performance times. Based on these
values, each robot is able to estimate how long a task takes by default.

L-ALLIANCE features two distinct phases: the active learning phase for training
missions and the adaptive learning phase for live missions. In training, the robots are
maximally patient and minimally acquiescent. This ensures that they can learn their
own and each others’ task execution times without disturbance. In live missions, the
training data is then used to estimate proper impatience rates. Of course, monitoring
remains active and the robots are still able to adapt their estimates.

With respect to Swarm Robotics, one of the most constraining properties of AL-
LIANCE is that robots have to be able to sense what other robots are doing. This degree
of awareness can easily be reached by allowing robots to broadcast their status. Un-
fortunately, broadcasting does not scale very well and may be limited by the medium’s
bandwidth. To overcome this problem, communication range may be decreased. In
such a “local version” of ALLIANCE, the robots will still be able to perform well, but
the solution quality will most likely suffer due to the missing knowledge about robots
out of range.

3.3.3.4 Summary of Threshold-based Control

Threshold-based control is a very intuitive mechanism for activating a single task. In
activation threshold models, the threshold absolutely defines when to switch to the task.
To avoid that all individuals of a swarm are switching at the same point of time, the
threshold values can be dispersed. Alternatively, the robots can interpret the threshold
and probably switch earlier or later. This is achieved by the use of a threshold function,
mapping a stimulus to an activation probability. The point where activation gets likely
is controlled by the threshold.

ALLIANCE is a prominent framework using activation thresholds. Its robustness
is based on the availability of information about the states of other robots. As a result,
its usefulness is limited to scenarios where either communication of states is possible
or sensory data is rich enough to derive other robots’ performance from.

If more than one task demands activation at the same time, the robot has to make a
decision. By the use of strict rules, like a precedence order, tasks with low demands will
never be served as long as higher demands are present. This undesired behavior can
be countered by probabilistic control, which may be based on thresholds but doesn’t
have to.

3.3.4 Probabilistic Control

In probabilistic control, each robot randomly allocates tasks based on a discrete prob-
ability distribution which maps each task i to a probability value pi (

∑
i pi = 1). This

probability distribution, which may be different for each robot, controls individual be-
havior.

As already mentioned in threshold-based approaches, adaptation of control param-
eters – like thresholds – is a very powerful mechanism to deal with previously unknown
and potentially dynamic environments. In probabilistic control, the change of one prob-
ability has to involve a change of at least one other probability to ensure that the sum
of all values still equals 1.
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Figure 3.8: Snapshot of an experiment using the Variable Delta Rule. Four robots are
either foraging or resting. The nest, which is the retrieval zone for prey, is situated
in the center and indicated by a light source. The image is taken from [LDD04a].

In the following, adaptation in the simple case of two tasks to choose from is dis-
cussed first. After that, a more general solution for adaptive selection from an arbitrary
number of tasks is presented.

3.3.4.1 Variable Delta Rule

In the case of two tasks, managing a single probability value p1 is sufficient because
the other one can be derived from p1: p2 = (1− p1). Labella et al. [LDD04a, LDD04b,
Lab07] investigate a foraging mission where each robot manages a value p1 defining the
probability to stop resting and to activate foraging.

Figure 3.8 shows a snapshot of an experimental scenario where four MindS-bots
are deployed for foraging. A MindS-bots is a LEGO MINDSTORMSTM robot that
emulates the abilities of an s-bot from the Swarm-bots Project (cf. section 2.2.3.4).

The success of foraging is dependent on the amount of food available in the envi-
ronment. After some time without finding food, the robot will return to the nest, abort
foraging and activate resting. If foraging was successful, p1 is raised by ∆s, and if forag-
ing failed, p1 is reduced by ∆f . ∆s and ∆f are dependent on the consecutive number
of successes and failures respectively: ∆s = successes ∗ ∆ and ∆f = failures ∗ ∆.
Additionally, p1 is constrained to a minimum and maximum value, which ensures that
foraging is never completely abandoned.

This adaptation mechanism is called Variable Delta Rule. Although it is very simple,
it is able to efficiently adapt to dynamic environments. Additionally, a proper division
of labor can be achieved. If the swarm is heterogeneous and some robots are more
successful in foraging than others, the swarm will even select the best individuals more
often.

Liu et al. [LWS+07a, LWS+07b] propose some modifications of the Variable Delta
Rule that can make adaptation even more efficient. In their work, each robot is not
only influenced by its own outcome but also by the other robots’ observations and some
environmental cues. In contrast to the work of Labella et al., Liu et al. do not adapt
probabilities but thresholds: instead of adjusting the probability for starting a time-
constrained foraging task, the times for resting and searching are adapted. Nevertheless,
the robots behave very similar and both approaches are appropriate solutions. In fact,
the Variable Delta Rule is an all-purpose mechanism.
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3.3.4.2 Motivation-based Task Allocation

This thesis proposes a motivation-based approach for Task Allocation. Each task is
related to a specific motivation level in the range [0, 1]. In contrast to ALLIANCE,
the motivation value does not have to reach a given threshold before the corresponding
task is activated. Only a motivation level of 0 means that the task will definitely not be
selected. In all other cases, the selection is possible by chance. Note that the highest
motivation level of 1 does assure selection but indicates that there is no other task that
is selected with a higher probability.

Individual robots allocate their next task by comparing all motivation levels and
building a simple discrete probability distribution where the weight of each probability
conforms the weight of each motivation. As a result, each probability for selecting task
i can be calculated from the corresponding motivation mi as follows:

pi =
mi∑
kmk

. (3.4)

This definition assumes that at least one motivation mi is greater than 0. Basically,
the corresponding action selection algorithm is a simple form of softmax action selection
where actions – tasks – are weighted by their motivation values (cf. section 2.3.1.4 in
the introduction of reinforcement learning).

In fact, limiting the motivation values to the range [0, 1] is not necessary. Tasks
that manage a minimum motivation level greater than 0 will always be selected by
chance. Tasks with increased upper motivation bound may accumulate more weight in
comparison to other tasks.

For the modification of motivation values, the designer may use any kind of adap-
tation rules. The corresponding probabilities will always be adjusted automatically.
Nevertheless, the design of proper rules remains difficult. In most cases, common sense
helps to find efficient adaptation rules. For example: Momen and Sharkey [MS09]
present some fixed adaptation rules in the context of a swarm consisting of foraging
and brood caring ants. Although they are working with thresholds defining some wait-
ing time, the concept of adaptation is valid for motivations, too: if brood carers observe
a lack of food, their threshold value for foraging is reduced, which conforms the increase
of a corresponding motivation.

Note that motivation-based Task Allocation forces the selection of a task. To enable
robots not to activate any task, an additional “do nothing” task has to be introduced.
By the use of proper adaptation rules, the motivation for this empty task can be raised
if no other task demands activation.

Motivational Adaptive Threshold Functions. Motivation-based Task Allocation
can be combined with adaptive threshold functions. In this case, each former probabil-
ity for activating a task, which is dependent on a stimulus and a threshold, is interpreted
as a motivation value for Task Allocation. This paragraph defines the corresponding
discrete probability distribution that is used to control a single robot.

Given that n is the number of active tasks a robot can choose from, task 0 is defined
as the idle task. If the idle task is activated, the robot waits for a fixed amount of time.
This waiting time defines the rate of an idle robot bothering with Task Allocation. In
contrast, the execution times for task 1 to n are task dependent. The next task is not
selected until the currently active task has been completed. For example: a foraging
task can last until a food item is successfully retrieved or until some internally defined
search time is exceeded.
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For each active task i ∈ {1, . . . , n}, the robot under consideration manages a stim-
ulus si. The vector s = (s1, . . . , sn) covers those stimuli and is calculated from the
robot’s perception, which may consist of both sensory input and accumulated knowl-
edge. Additionally, the vector t = (t1, . . . , tn) defines threshold values for each active
task.

The probability for selecting task i, which is dependent on the observed stimuli
vector s and the current set of thresholds t, can then be defined as follows:

pi(s, t) =
mi(s, t)
n∑
k=0

mk(s, t)

, (3.5)

where the motivation value mj(s, t) is defined by a threshold-based function that
returns a provisional probability for activating task j – including the idle task 0. By
using a threshold function based on the logistic function, mj can be defined as follows:

m0(s, t) = max(0, 1−
n∑
k=1

mk(s, t)),

mi(s, t) =
1

1 + e−θi(s,t)
, θi(s, t) =

6

ri
(si − ti), i ∈ {1, . . . , n},

where ri is the control parameter that adjusts the steepness of the sigmoid curve.
The definition of m0 ensures that the provisional probabilities remain the same if their
sum is smaller than 1. The idle task will simply adopt the remaining probability. As a
result, the threshold tj still indicates the level of stimulus sj needed to get a probability
of 0.5 to select the task. As soon as the sum of provisional probabilities exceeds 1, the
idle task adopts a probability of 0 and the provisional probabilities are weighted due
to their interpretation as motivation levels.

The incorporation of the idle task is a tradeoff between full-time engagement and
selective engagement. As long as there is a sufficient demand to do something, the robot
will definitely activate a task unequal to the idle task. As soon as the sum of motivating
probabilities drops below 1, the robot will probably stay idle. For example: given two
tasks with m1 = 0.3 and m2 = 0.2, the idle task gets probability p0 = 0.5 and the two
other tasks adopt the provisional probabilities: p1 = m1 = 0.3 and p2 = m2 = 0.2.
Given two tasks with m1 = 1 and m2 = 0.5, the idle task is rendered impossible and
the remaining probabilities are weighted: p0 = 0, p1 = 1

1+0.5 = 2
3 and p2 = 0.5

1.5 = 1
3 .

Note that each motivation value is influenced by a perceived stimulus and a thresh-
old. As before, the threshold may be adapted, e.g. by the Variable Delta Rule.

3.3.4.3 Summary of Probabilistic Control

Probabilistic control follows a simple principle: let chance decide which task to allocate.
Each robot manages a private discrete probability distribution and acts accordingly.

The Variable Delta Rule is a possible mechanism for adapting the probability distri-
bution. It was presented in the context of foraging, where a decision between searching
and resting had to be made. Basically, the Variable Delta Rule proposes to react to
specific events, like success and failure, to modify the probability to engage the cor-
responding task accordingly. In the simple case of two possible tasks, e.g. foraging or
resting, one probability value is sufficient and can be adapted directly, without both-
ering that the probabilities have to sum up to 1.
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In the case of more than two possible tasks, this thesis proposes to calculate the
probability distribution by weighting artificial motivation levels. These values may be
either fixed or dependent on some parameters. In the latter case, this thesis presents
a mechanism for probabilistic control that uses adaptive threshold functions as a basis
for motivation.

Up to this point, all adaptation is controlled manually: the designer defines some
fixed rules modifying concrete values by using common sense. These rules rely on prior
knowledge about the tasks. The next section presents an alternative mechanism for
Task Allocation that renounces such knowledge.

3.3.5 Decentralized Reinforced Control

In decentralized reinforced control, Task Allocation is driven by the policy of a rein-
forcement learning method (cf. section 2.3). Initially, the robots do not know which
tasks are better in which state. Each robot has to autonomously learn a policy that
maximizes accumulated reward in the long run.

In fact, decentralized reinforced control is a special case of probabilistic control, be-
cause a policy is nothing else than a discrete probabilistic distribution which is adapted
by strict rules derived from the used reinforcement learning method. Sarsa, for exam-
ple, formulates a rule saying: “each time a reward is observed, update the probability
of re-choosing the task that led to the reward.”

Balch [Bal99] uses Q-learning in a multi-foraging mission. The robots have to learn
a policy for selecting from a set of behaviors dependent on their perceptual state. Balch
compares three different methods for rewarding agents:

Local performance-based reinforcement: Each robot is rewarded individually if
it delivers a food item.

Global performance-based reinforcement: All robots are rewarded if any robot
delivers an item.

Local shaped reinforcement: Each robot is rewarded progressively for accomplish-
ing portions of the foraging task.

Both performance-based techniques are tied to the performance metric, which is the
delivery of food items. Such delayed rewards can slow down learning. By rewarding
sub-tasks of foraging more directly, the learning time can be decreased significantly. On
the downside, local shaped reinforcement is formed by the designer’s opinion of how the
mission should be achieved. Thus, the robots are not fully autonomous in finding an
efficient solution for the mission. Bad design of rewards may even distract the robots
from the optimal solution.

Balch uses Q-learning essentially for training. In his scenario, robots even have to
learn basic abilities. Initially, a robot does not know that it should drop a food item
in the delivery zone. Having to learn such elementary abilities slows down adaptation
unnecessarily, especially in live missions. For instance: assume that one robot has
specialized in foraging green items and another one in foraging red items. After this
training, the robots are put in a live mission, where only red items are present. As a
result, the green-specialized robot may have to learn foraging red items from scratch.
If the robot uses a greedy policy, it may even be unable to adapt, because it will not
explore this possibility anymore.
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Dahl et al. [DMS03, DMS09] examine a simpler multi-foraging mission: each robot
can choose between two spatially separated foraging cycles. The swarm as a whole has
to manage an appropriate proportion of robots in one cycle and the other. This ratio
is influenced by the food density in each cycle and by the group dynamics. Too many
robots in one cycle will increase collision probability and decrease efficiency. Dahl et al.
use Q-learning and ε-greedy action selection to adapt to different circumstances.

Martinson and Arkin [MA03] use Q-learning for adapting the selection of different
roles in a foraging scenario. In their work, robots assume either the role of a forager,
soldier or mechanic. Foragers gather prey, soldiers defend against enemies and mechan-
ics repair robots that are damaged by enemies or otherwise stuck in the environment.
The selection of a role activates a predefined complex behavior, which is implemented
by a Finite State Automata.

For on-line learning, this thesis proposes to use Sarsa(λ) instead of Q-learning,
because the on-line performance of the off-policy control approach of Q-learning may
be worse than the performance of the on-policy control approach of Sarsa(λ) (cf. sec-
tion 2.3.3.1).

Decentralized reinforced control is a very elegant mechanism for Task Allocation.
Reinforcement learning allows robots to adapt to dynamic environments inclusive group
dynamics. In order to limit the space of possible actions, complex behaviors should
be used. Of course, these behaviors can also be controlled by separate reinforcement
learning.

The most critical and difficult design aspect in reinforced control is the definition of
a proper reward function. Especially when the essential rewards result long time after
the corresponding action, additional rewards may be needed to speed up learning and
maintain adaptivity in practice.

3.3.6 Relevance for Swarm Robotics

Autonomous Task Allocation focuses on the control of individuals. By proper definition
of local rules, the swarm may emerge complex behavior that efficiently achieves the
global mission.

Since most mechanisms are inspired by social insects and rely on local and limited
sensing and communication, Autonomous Task Allocation is “naturally” related to
Swarm Robotics. In fact, most literature speaking of mechanisms for Task Allocation
in Swarm Robotics refers to Autonomous Task Allocation.

Unfortunately, the bottom-up approach of Autonomous Task Allocation involves
some disadvantages. Local rules, thresholds and rewards are hard to design in order to
emerge a desired coordinated behavior. As a result, solution quality for missions with
highly coordinated tasks is likely to suffer in comparison to a top-down approach.

On the other hand, Autonomous Task Allocation has a big strength: inherent
robustness. Each individual tries to perform as best as possible solely relying on its
own view of the world. As a result, failures of other robots are perceived as a part of
the dynamic environment to which all swarm members will naturally adapt.

Kalra et al. [KM06] compare threshold-based Task Allocation and market-based
approaches. They come to the conclusion that threshold-based Task Allocation is
nearly as efficient as market-based Task Allocation but on a fraction of the expense. If
communication is error prone, the threshold-based approach can even win against the
market-based approach.
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3.4 Hybrid Task Allocation

Hybrid Task Allocation covers all allocation strategies that use a combination of Au-
tonomous and Heteronomous Task Allocation.

This thesis proposes two different categories of combination: interlaced control and
side-by-side control. Interlaced control mixes mechanisms from both Autonomous and
Heteronomous Task Allocation to create a completely new methodology, whereas side-
by-side control switches between fully developed mechanisms from both categories.

3.4.1 Interlaced Control

Interlaced control may be the most powerful type of combination because it is able
to invent new methods that benefit from both Autonomous and Heteronomous Task
Allocation. This section presents some mechanisms and frameworks in this category.

3.4.1.1 Approximation of Neighbor Actions

If robots are aware of each other and can approximate the next actions of their neigh-
bors, each robot is able to exploit this knowledge and adapt its own plan. This approach
is based on local decisions that are influenced by other near robots. As a result, the
process is a mixture of Autonomous and Heteronomous Task Allocation. On the one
hand, each robot is autonomous in decision making. On the other hand, the robot is
influenced by its neighbors making its decisions partly heteronomous.

An example for an architecture using neighbor approximation is MVERT, which was
developed by Stroupe [Str03]. MVERT stands for “Move Value Estimation for Robot
Teams”. This method is successfully applied in simulation and on physical robots for
mapping, dynamic target tracking and exploration. By approximating the next-step
contributions of its neighbors, each robot is able to adapt its next action. MVERT
performs better than completely autonomous action selection. At the same time it
limits computation time compared to a one-step optimal omniscient planner.

Another example for a similar approach is presented by Atay and Bayazit [AB07].
In their work, approximation is not based on sensory input but on communication.
Robots actively exchange plans with the k-next neighbors to maintain a self-deployment
mission. Additionally to exploration and observation, the swarm has to manage com-
municational connectivity. Atay and Bayazit propose the exchange of the following
information:

Intentions: Each robot informs about the position that maximizes its utility.

Directives: Each robot computes optimal positions for its neighbors and informs each
of them accordingly.

Target Assignment: Each robot informs about its target coverage when located at
the intended location.

By the exchange of intentions, directives and target assignment, each robot is able
to adapt its strategy to the desires of its neighbors. This local plan refinement enables
the swarm to emerge optimized allocations.

Furthermore, Parker [Par02] presents a similar approach based on the ALLIANCE
framework. In her multi target observation scenario, each robot locally broadcasts
messages about its observation status. Received messages from other robots result in
repulsive forces whereas sensed targets result in attractive forces. The robot combines
theses forces to find an accumulated movement direction.
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3.4.1.2 Hoplites

Hoplites [KFS05], presented by Kalra et al., is a framework that combines market-based
approaches with the approximation of neighbor actions. Accordingly, two different
modes are featured: active and passive coordination.

In passive coordination, which is the default behavior and conforms an adapted
version of Stroupe’s MVERT [Str03], each robot broadcasts its locally best plan. This
plan is frequently adapted as the robot receives the plans of its neighbors. If a robot
discovers that it would be more profitable if another robot changed its plan, it switches
to active coordination.

In active coordination, robots use a market-based approach for negotiation about
plans. In order to increase their personal profit, robots offer virtual money that other
robots get if they change their plans in return. As soon as the negotiation process is
concluded, each participating robot switches back to passive coordination.

3.4.1.3 AFFECT

Gage [Gag04] presents an emotion-based recruitment approach called AFFECT. In his
study, market-based task announcement is mixed with a threshold-based mechanism
for autonomously deciding when to reply to the announcement.

AFFECT uses the emotion shame to control the willingness to respond to a received
help message from another robot. After this task announcement, the robot remains
calm and delays its respond to the point of time where the shame variable exceeds a
given private threshold. Each robot increases and decreases shame at a different rate
that may depend on the robot’s utility for the task.

This technique ensures that robots stay calm as long as possible. Initially, a task an-
nouncement is probably ignored completely or answered by a single robot only. Likely,
this robot is the best-suited one, because it seemed to increase its shame value at the
highest rate. As a result, the amount of needed communication messages is reduced
drastically. AFFECT is very well suited for stealth missions because robots will not
reveal their position immediately if any robot needs help.

Interlaced control mixes different mechanisms from both Autonomous and Het-
eronomous Task Allocation. This enables the creation of complex algorithms that
hopefully balance each other.

There are not many frameworks that intentionally use interlaced control. This may
be a result of the effort that is needed to develop and test new mechanisms. Fortunately,
the definition of approaches using both Autonomous and Heteronomous Task Allocation
can be based on existing mechanisms, too. This is discussed in side-by-side control.

3.4.2 Side-by-Side Control

In side-by-side control, the swarm is controlled by fully developed mechanisms from
both Autonomous and Heteronomous Task Allocation. From local (robot) view, these
methods can either be used alternatively or concurrently.

3.4.2.1 Alternative Control

If individual robots use different mechanisms for Task Allocation, the swarm can profit
from the side-by-side execution of these strategies.
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strategy selection

mechanism 1
(e.g. Autonomous)

mechanism 2
(e.g. Heteronomous)

Task 2Task 1 Task 3 ...

(choose)

(a) alternative control

mechanism 1
(e.g. Autonomous)

mechanism 2
(e.g. Heteronomous)

Task 1 Task 2 Task 3

(b) concurrent control

Figure 3.9: (a) Example for alternative side-by-side control: each robot selects one of
two alternative approaches for Task Allocation: mechanism 1 or mechanism 2. Both
mechanisms are able to allocate all available tasks and exclude each other. (b) Ex-
ample for concurrent side-by-side control: each robot uses two different approaches in
order to solve Task Allocation. If mechanism 1 selects mechanism 2, both mechanisms
are active concurrently.

Bees, for example, use the waggle dance to communicate where food can be found.
An individual that takes this advice is under heteronomous control, whereas an indi-
vidual ignoring the signal is autonomous. Assuming that every individual is controlled
by one of two alternative strategies, the swarm is divided into two castes: searchers
and retrievers. Searchers are self-directed whereas retrievers are directed by others. By
a priori choosing an appropriate ratio of the castes, the swarm profits from both strate-
gies. Unfortunately, predefined ratios have to conform the environmental conditions.
If, for instance, food is not clustered but dispersed, retrievers are worthless. [DC04]

By allowing each individual to decide whether to follow an order or to ignore it,
the swarm may be enabled to manage a proper ratio of both strategies on its own.
Such autonomous decisions can also be found in bee colonies: if bees already have
knowledge about food sites, they ignore the information from the waggle dance with
high probability (93 %) [GBF08].

Figure 3.9(a) shows an example for alternative control: each robot selects one of
two alternative mechanisms to solve its complete Task Allocation problem. From global
view, different mechanisms are used side-by-side. The selection of mechanisms can
either be done off-line or on-line. By live adaptation, the swarm is able to react to
changes in the environment. To manage a proper ratio of mechanisms in the swarm,
any form of learning or adaptation can be used, e.g. reinforcement learning or the
Variable Delta Rule (cf. section 3.3.4.1). For example: Kaminka et al. [KEK09] use Q-
learning to select the best coordination strategy in case of robot collision. The reward
function, defined by an effectiveness index, maximizes the time between conflicts and
reduces both time and resources spent for coordination.

A typical example for alternative control is the incorporation of a fall-back solution.
Heteronomous Task Allocation mechanisms, for example, are known to result in better
allocations than Autonomous Task Allocations but do not perform well if communi-
cation is disturbed. In this case, robots could fall back to another mechanism that is
better suited for the present situation.
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3.4.2.2 Concurrent Control

In contrast to alternative control, concurrent control allows each robot to use different
mechanisms at the same time. Often, those mechanisms are organized in a hierarchical
structure and incorporate some additional rules that define precedences.

Figure 3.9(b) shows an example for concurrent control: mechanism 1 is used to
decide whether to use mechanism 2 to control task 1 and 2 or to execute some other
tasks. This special case demonstrates that the complete Task Allocation problem (for
tasks 1, 2, 3, . . . ) can be broken into parts that can each be approached by different
mechanisms.

Concurrent control allows to use mechanisms for a smaller set of tasks. Because
mechanisms in Heteronomous Task Allocation often do not scale very well, they seem
to be irrelevant for Task Allocation in Swarm Robotics at first sight. However, Het-
eronomous Task Allocation is very efficient in smaller groups of robots. Thus, it can
be used as a sub-routine for parts of the swarm. In foraging, for exemple, the auction
mechanism is better used to locally coordinate a cooperative transportation task than
to decide on comparably independent actions. Note that if local communication and
leading is possible, there is no reason to constrain design to simple rules that solely rely
on emergence to solve complex problems.

Side-by-side control allows to combine fully developed mechanisms for Task Alloca-
tion. Instead of reinventing the wheel by the development of complex new strategies,
existing approaches can be organized in an alternative or concurrent way. In many
cases, the global mission is decomposable into sub-missions that can be targeted by
well-engineered allocation strategies. This leads to hierarchical structures that com-
bine various mechanisms for Task Allocation.

3.5 Summary

This chapter has presented different mechanisms that can be used to solve Multi Robot
Task Allocation (MRTA) in Swarm Robotics. A taxonomy was proposed that enables
the categorization of techniques with respect to the control approach. Heteronomous
Task Allocation utilizes a top-down approach by allowing some leader robots to com-
mand worker robots. Autonomous Task Allocation permits each individual robot to
behave self-directed, which hopefully emerges a desired behavior of the swarm a whole.
Finally, Hybrid Task Allocation combines both autonomous and heteronomous mech-
anisms.

Heteronomous Task Allocation was further divided into Centralized and Distributed
Task Allocation. Centralized approaches feature omniscient control, blackboard control
and centralized reinforced control, which all rely on a single leader giving orders. In
contrast, distributed approaches allow to dynamically grant the leader role to avoid a
single point of failure. The best-known method in Distributed Task Allocation is the
market-based approach which basically uses some form of auction to negotiate about
who will execute a task.

Although mechanisms in this category generally do not scale very well, heterono-
mous control remains important for Swarm Robotics. At least when used as a sub-
routine for smaller groups of robots, explicit cooperation can be achieved efficiently.
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Autonomous Task Allocation was further divided into rule-based, threshold-based,
probabilistic and decentralized reinforced control. Rule-based control is the most gen-
eral category for the implementation of autonomous control. It is very well suited for
the definition of complex behavior. This abstraction from basic behaviors enables a
robot to use some higher level forms of control.

Threshold-based approaches utilize a special parameter, called threshold, to control
the activation of single tasks. The threshold can either be interpreted as a straight line,
which is considered by the activation threshold model, or as a parameter that controls
the probability to activate a task, which is defined by a, potentially adaptive, threshold
function.

In probabilistic control, a robot is controlled by a discrete probability distribu-
tion that maps all available tasks to corresponding probability values. Although these
chances can be adapted by hand, it is more elegant to adapt abstract motivations that
serve as a basis for the calculation of the final probabilities. This kind of probabilistic
control was discussed under the designation Motivation-based Task Allocation, which
features an approach utilizing both thresholds and motivations.

Decentralized reinforced control gives a robot the ability to learn a policy that
drives Task Allocation. Although literature focuses on Q-learning for the adaptation
to dynamic environments, this thesis proposes to use Sarsa(λ) because it is better suited
for continuous on-line learning.

Hybrid Task Allocation was further divided into interlaced and side-by-side control.
Interlaced control allows the creation of new methods by merging different approaches
whereas side-by-side control utilizes fully developed mechanisms.

This chapter has given a broad overview of different mechanisms for solving Multi
Robot Task Allocation (MRTA) in the context of Swarm Robotics. Designers that
want to create a new swarm robotic system should first investigate if they want to use
a heteronomous, autonomous or hybrid approach.

Heteronomous mechanisms aim at commanding the swarm as a whole and have
the potential to produce optimal solutions. On the downside, top-down coordination
involves effort in both communication and computation.

Autonomous mechanisms aim at individual self-directed control and have the po-
tential to emerge optimal solutions with a fraction of the expense. On the downside,
bottom-up coordination is hard to handle and simple rules that emerge a desired be-
havior are difficult to find.

Hybrid mechanisms aim at balancing autonomous and heteronomous control and
have the potential to tailor strategies that avoid the disadvantages of both approaches
while profiting from the advantages. On the downside, this potential may be fictitious
because combinations could as well cancel the components’ advantages and strengthen
their disadvantages. Nevertheless, this thesis encourages to experiment with new mixed
approaches.

Figure 3.10 gives an overview of the categories and mechanisms covered by this
thesis. The boxes with dotted border indicate that each category can be extended by
new mechanisms.

Note that every mechanism is situational. As a result, this thesis does not favor
one technique over another. At least by considering hybrid approaches, all presented
mechanisms are relevant for Task Allocation in Swarm Robotics.
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Chapter 4

Swarmulator - A Simulator for
Swarm Robotics

Simulation is a very important tool in the development of robotic swarms because ex-
periments with physical robots are very time-consuming. By emulating robotic actions
in a simulated environment, designers can efficiently test different control approaches
and forecast the outcome of experiments with real robots. Simulation does not only
save time but also money: physical robots are very valuable, and damage to them
should be avoided at all costs.

Within the scope of this thesis, the Swarmulator, a simulator for Swarm Robotics,
was developed. Basically, the Swarmulator is a platform for the control of multiple
simulation runs that carry out experiments in a virtual world. If desired, simulation
runs fill csv-files with statistical data. Additionally, the Swarmulator lets the user take
a look into running experiments to watch their advancement.

Although the Swarmulator is designed to support this thesis, namely for testing
mechanisms for Task Allocation in Swarm Robotics, the underlying framework is suit-
able for the implementation and execution of any experiment that is based on stepwise
computation of a virtual world.

This chapter gives a brief overview of the Swarmulator. To begin with, the basic
simulation platform is described. After that, the Swarmulator’s applicability for Task
Allocation in Swarm Robotics is explained.

4.1 Simulation Platform

This section points out that the Swarmulator is a simulation platform that can be used
to run arbitrary experiments. It is based upon the well-known model-view-controller
architecture and features a modular design that enables users to import new types of
experiments at runtime. Additionally, it supports batch processing by allowing scripted
creation and automated execution of experiments.

4.1.1 Architecture

The Swarmulator uses a model-view-controller (MVC) architecture to manage the ex-
ecution of each experiment. The world serves as a model that can be modified by
computing its next simulation step. A simulation thread serves as a controller that
executes this stepwise transition of the world. The user is able to follow the process by
opening viewports that reflect the world’s current state.
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World
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Figure 4.1: Simplified representation of the model-view-controller pattern used in the
Swarmulator.

Figure 4.1 shows a simplified version of the MVC pattern in use. Basically, the
following steps are processed: The Swarmulator uses a factory to create a world. This
world is associated to a thread that computes steps for the world. At user’s request,
the Swarmulator opens a new view that observes a specific world and automatically
fetches image data if the world has changed. For each view, a Processing [PC12] applet
is used to draw the attached world.

Figure 4.2 depicts a more accurate UML class diagram of the Swarmulator. The
Swarmulator’s main frame controls an arbitrary number of simulation runs (although
not stated in the diagram, the class SimulationRun implements the interface Runnable).
After creating a simulation run for a simulatable world, which has been created by a
world factory, the Swarmulator can start a thread that finally computes steps via the
execution of the run method. The processing speed of the experiment is steered by a
parameter of the simulation run that can be changed from the main frame or from any
simulation sketch (a Processing applet) that visualizes the world. Besides controlling
speed, the main frame is additionally able to terminate a simulation run. On the other
side, the simulation sketch additionally manages a view that is used to draw a cutting
of the included world. This viewport, which can be altered by the user, defines which
image data needs to be fetched from the world. For the sake of thread safety, both step
computation and image fetching should be implemented via synchronized methods.

Figure 4.3 shows the main frame of the Swarmulator in action. Basically, the frame
lists all created simulations and presents their status. In the picture, the first two
simulations are running whereas the third one has not been started yet. As indicated
by the numbers, the first experiment should be automatically stopped after 20 minutes
of the world’s internal time. New simulations can be created via the plus-button.

The interfaces ISimulatedWorld and IWorldFactory already indicate that the
Swarmulator features a modular design. This feature is described in the next section.
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Figure 4.3: Main frame of the Swarmulator in action.

4.1.2 Modular Design

Creating new types of experiments that should be simulated by the Swarmulator is
easy. The user only needs to implement two interfaces:

• ISimulatedWorld and

• IWorldFactory.

Figure 4.4 shows these interfaces and their relation to other classes. Note that exper-
iments are basically defined by the construction of a world model (cf. figure 4.2). By cre-
ating a world that implements the interface ISimulatedWorld (and hence IViewable-

World), the user can specify both the world’s dynamics (via the implementation of the
method computeStep) and the world’s representation (via some form of image that
updates a WorldView).

To be able to create a user defined world, the Swarmulator needs a corresponding
factory. By implementing the interface IWorldFactory, the user can specify which
type of world should be created dependent on some given settings. These settings can
be derived from a defining textual phrase (cf. figure 4.4). Batch processing, which is
further described in section 4.1.3, uses them to create different kinds of worlds in a row.

The Swarmulator features the possibility to import world factories from jar-files.
By this, users can distribute their experiment’s definition without having to include the
simulation platform itself. As long as the jar-file contains a top-level file “factories.cfg”
that names the included world factories, the Swarmulator is capable of locating the
corresponding classes. After importing such a jar-file, the user is able to access the
given world factories in order to create and execute simulations.
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«interface»
IWorldFactory

createWorld(..., settings: WorldSettings): ISimulatableWorld
createWorldSettings(settings: String): WorldSettings

«interface»
ISimulatableWorld

computeStep(millis: int)

«interface»
IViewableWorld

updateWorldView(view: WorldView, ...)

«creates»

 
SimulationRun

Swarmulator /
MainFrame

 
WorldView

*

imports

11
simulates

1*
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Figure 4.4: Interfaces for the creation of new experiments.

4.1.3 Batch Processing

To ease the creation of simulations, the Swarmulator allows the user to run scripts.
These scripts are composed of statements that initialize simulation runs by setting
some parameters and by using world factories with specified world settings.

Code 4.1 shows an example for a script’s content. First, some settings are defined:
the initial random seed value to use, the step length in milliseconds, the stop time, a
logging directory and the world settings. The star stands for the default settings of the
attribute. For example, a random seed of * means that the initial value is randomly
chosen for each simulation created in the following.

As already stated in the last section, worlds are created via a factory that accepts
additional settings. In scripts, these world settings can either be set for all following
create-statements or defined locally, separated by a “:“ from the world factory’s class
name. In code 4.1, three simulated worlds are created by a factory named “MyWorld-
Factory”: the first one with setting “variantA”, the second one with “variantB” and
the third one with “variantA” again. By the way: the Swarmulator will ask the user
to import a jar-file if the given factory name is not known.

Additionally to running scripts, the Swarmulator is able to automatically process the
created list of simulations. The user can define how many of these experiments should
be executed at the same time. If desired, finished simulations can automatically be
terminated and removed from the list. Alternatively, the user could keep the simulations
for further execution.

The Swarmulator is well suited for the execution of arbitrary experiments. By im-
plementing a simple interface for simulatable worlds, the user is able to define any
form of stepwise dynamics that can be processed by the simulation platform. Addi-
tionally, image data can be included that represents the world’s state and that can be
viewed in one or more viewports. Thanks to their modular design, world factories can
be imported at runtime. Additionally, batch processing enables the Swarmulator to
automatically carry out simulations that are created by a script.
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1 // settings for world creation

2 randomSeed: *

3 stepLength: 200

4 stopTime: *

5 logDir: *

6 worldSettings: variantA

7

8 // create some simulations

9 create: MyWorldFactory

10 create: MyWorldFactory:variantB

11 create: MyWorldFactory

Code 4.1: Example of a script used for batch processing.

Although the Swarmulator is able to carry out any form of experiment, it is primarily
designed for the simulation of mechanisms for Task Allocation in Swarm robotics. The
next section explains which features were implemented to credit this applicability.

4.2 Applicability for Task Allocation in Swarm Robotics

The Swarmulator does not only provide interfaces for the creation of arbitrary simulat-
able worlds but also implements a default world that is applicable for the simulation of
swarms. Robots are modeled as active components of this world and may be equipped
with a task to execute. By defining a task that chooses between other tasks, robots
can make decisions regarding Task Allocation. This section gives further information
about these concepts.

4.2.1 World of Components

The default world implemented in the Swarmulator is called UserWorld. As shown in
figure 4.5, it implements the interface needed for simulations and extends a class named
ComponentWorld. As the name suggests, a ComponentWorld contains components.
Each time the world is initiated to compute its next step, it delegates the computation
to all of its components. By this, the components proceed to the next step, too.

Components are basically defined by a position and an orientation in their home
world. Each component is able to update its position and orientation but it has only a
limited view to its world (cf. the interface IComponentWorld in figure 4.5). In order to
sense the positions of other components, some kind of sensor has to be used.

Because a swarm may be composed of a massive amount of individuals, the frequent
use of sensors that search for components in a specified area can get computationally
expensive. In order to limit the amount of components that have to be checked in a
spatial query, the world manages a quadtree [Sam84] for each type of sensor, which
is a tree data structure that uses nodes with exactly four children (an example is
shown in figure 4.6). In this case, quadtrees store components with respect to their
two-dimensional location, and allow sensors to find their targets quickly.

In order to ease the logging of experimental data, the world also administrates the
access to csv-files. Components can query a desired file writer by name and add their
data without having to worry about the concrete logging directory.
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ComponentWorld
computeStep

Component
{abstract}

computeStep

UserWorld
updateWorldView

«interface»
ISimulatableWorld

computeStep
updateWorldView

«interface»
IComponentWorld

registerSensor
unregisterSensor

*

0..1

Figure 4.5: UML class diagram for the class ComponentWorld and its neighbors (for
the sake of simplicity this version omits some methods).

4.2.2 Tasks for Active Components

Active components are components that can be equipped with a task to execute. Each
active component, generally a robot, delegates the computation of its next step to the
task. In the terms of this thesis, a task represents a set of rules that activates basic
behaviors of its owner.

Figure 4.7 shows the relation between an active component and its ACT (active
component task). The component delegates the computation of its steps to its ACT

whereas the ACT controls the active component. Primarily, when not associated to a
component, an ACT is a “blueprint”. As soon as the ACT is set for an active component,
a private copy is created and bound to the component.

By default, an ACT cannot manipulate the component, because the accessible in-
terface IActiveComponent does not provide corresponding functionality. To enable
subclasses of the abstract class ACT to efficiently affect the component, new interfaces
have to be specified. Copying a blueprint for a component that does not support the
desired interface should throw an exception.

For example: the Swarmulator features a task class named ACTMoveToLocation.
As long as an instance of this ACT is not associated to an active component, it is just
a blueprint defining movement to a specific location. After giving the blueprint to
a component, which effectively associates a copy of the task, the component moves
to the given target. Because ACTMoveToLocation needs to control movement, the
associated component must implement a predefined interface called IMobileComponent.
Otherwise, an exception is thrown at assignment.

The Swarmulator features some more ACTs that ease the implementation of new
tasks. Figure 4.8 shows two of them: ACTEndless takes any task and executes it
over and over again, ACTSequence takes a list of at least one task and executes one
after another. Note that ACTSequence terminates when the contained list has been
processed.
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Figure 4.6: Example quadtree for position management: each cell is split into four
smaller cells if the number of contained objects exceeds 1. Image is taken from
Wikimedia Commons∗.

∗ http://commons.wikimedia.org/wiki/File:Point_quadtree.svg

http://commons.wikimedia.org/wiki/File:Point_quadtree.svg
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«interface»
IActiveComponent

ActiveComponent
{abstract}

setTask(blueprint: ACT)
computeStep(millis: long)

ACT
{abstract}

running: boolean
copyFor(c: IActiveComponent): ACT
computeStep(millis: long)
...

task = blueprint.copyFor(this);

executes

controls

if (task != null)
    task.computeStep(millis);

associatedComponent

task
0..1

0..1

Figure 4.7: UML class diagram for active components and tasks.

ACT
{abstract}

ACTEndless ACTSequence

1 1..*

Figure 4.8: UML class diagram for the common active component tasks ACTEndless

and ACTSequence.

r : ACTRandom

 : ACTSelectRandom

a : ACTMoveToLocation b : ACTMoveToLocation

Figure 4.9: Example UML object diagram for an instance of ACTRandom.
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This concept of tasks for active components should not be misinterpreted: a com-
ponent should neither be able to change its own task nor be able to change the task
of another component. The assignment of an ACT, which can be interpreted as the
“brain” of the robot, is subject of the world factory. To enable robots to choose from
a set of tasks, an ACT for Task Allocation has to designed.

4.2.3 Tasks for Task Allocation

The Swarmulator uses ACTs to manage Task Allocation. Basically, such an allocation
task maintains a list of ACTs that are candidates for delegation. By defining circum-
stances under which the selected task changes, like after receiving a command message
or when a certain sensory input is available, the allocation task can effectively solve
the problem of Task Allocation in a reasonable way.

Innately, the Swarmulator offers three different ACTs for Task Allocation: ACTRandom,
ACTLinkedMotivation and ACTSarsa. These approaches are described in the following
subsections.

4.2.3.1 Random Task Allocation

The task ACTRandom is an endless version of the – also implemented – task ACTSelect-

Random, which randomly chooses from a given list of ACTs. Because ACTSelectRandom

terminates when the selected task is finished, it needs to be wrapped by the task
ACTEndless to achieve continuous selection of the given tasks. Figure 4.9 shows an
example for an instance of ACTRandom: the allocation task r delegates to a selection
task that randomly chooses to delegate either to the movement tasks a or to b.

4.2.3.2 Motivation-based Task Allocation

The task ACTLinkedMotivation delegates the computation of steps to an ACT that
is selected by a chance dependent on the motivation for the task. Motivation values
are adapted by a motivation changer that applies changes each time a selected task
succeeds or fails.

Figure 4.10 demonstrates the construction of this ACT in a UML class diagram: the
task ACTMotivated contains a motivation value that is used by ACTSelectMotivated

to select it with a probability according to the motivation’s weight in comparison to all
other available motivated tasks. ACTLinkedMotivation uses a MotivationChanger to
create its selection task and to delegate the adaptation of motivations when a selected
task terminates.

4.2.3.3 Reinforced Task Allocation

The task ACTSarsa implements Sarsa(λ), a temporal-difference learning method that
incorporates eligibility traces (cf. section 2.3 about reinforcement learning). The per-
formance of ACTSarsa is very much dependent on the specification of its constructor
parameters. Most of these parameters are instances of reinforcement learning interfaces
provided by the Swarmulator.

Figure 4.11 shows a stylized UML class diagram that gives an overview of ACTSarsa
and the interfaces that need to be implemented. As demonstrated in pseudo-code 4.2,
the reward function is used to derive a reward value from the environment. Subse-
quently, the current state is observed and an appropriate next action is chosen by using
the Q-values as a basis for the given policy. After that, the eligibility for the recent
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ACTLinkedMotivation

ACTSelectMotivated

MotivationChanger
{abstract}

applyChanges(...)

«creates»

ACTMotivated
motivation: double

1..*
 1..*

1

delegate

tasks

 1

delegate  1

Figure 4.10: UML class diagram for ACTLinkedMotivation.

state-action pair is set to 1. Each Q-value then targets the novel expected accumu-
lated reward, which is calculated as the sum of the observed reward and the discounted
expected future rewards. The degree of approximation is limited by the step-size pa-
rameter α and the current eligibility values. Finally, the eligibilities fade out at a rate
dependent on the decay-rate λ and on the discount-rate γ.

Note that this implementation of Sarsa(λ) is very generic. Although the Swarmu-
lator provides default implementations for an ε-greedy policy as well as for an action
value function and an eligibility function based on hash maps, the users are free to
specialize all parameters to their needs. This includes the implementation of function
approximation in order to allow states with continuous variables.

In the Swarmulator, Task Allocation is realized by a task itself. By this, different
mechanisms can be mixed in a natural way. For instance: assume that a robot has to
choose between resting and two foraging approaches. This problem can be split into
two independent problems: choose between resting and foraging, and – in foraging –
choose between foraging approach 1 and 2. Both allocations can be addressed by a
different approach, e.g. by motivation-based and reinforced Task Allocation.

4.3 Summary

The Swarmulator is a graphical simulation platform that can be used to perform any
kind of experiment that is based on stepwise execution. Experiments are defined by
the implementation of a world factory that constructs virtual environments that are
processed by simulating threads. At runtime, these factories can be imported from jar-
files and be used for the creation of simulation runs. The Swarmulator is also equipped
with simple batch processing capabilities that allow both automated generation and
finishing of simulations.

In order to support this thesis, the Swarmulator was developed as a tool for testing
mechanisms for Task Allocation in Swarm Robotics. It features a pre-implemented
world that consists of a potentially massive amount of components that may use sensors
to percept each other. To avoid inefficiency in simulation, the world uses quadtrees to
reduce the computational effort when using sensors.
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1 // Execute when task a , which was s t a r t e d in s t a t e s , f i n i s h e d
2 {
3 S l a s t S = s ;
4 ACT lastA = a ;
5
6 // observe reward r ( that f o l l owed ac t i on a )
7 double r = rewardFunction . getReward ( environmen t ) ;
8
9 // observe cur rent s t a t e s ’

10 currentS = environmen t . getCurrentState ( ) ;
11 // choose next ac t i on a ’ us ing p o l i c y der ived from Q
12 nextA = act ionValueFunct io n . chooseAct ion ( currentS , p o l i c y ) ;
13
14 // c a l c u l a t e ∆ = r + γ ∗ Q( s ’ , a ’ ) − Q( s , a )
15 double lastQ = act ionValueFunct io n . getValue ( la s tS , lastA ) ;
16 double currentQ = act ionValueFunct io n . getValue ( currentS ,

nextA ) ;
17 double ∆ = r + γ ∗ currentQ − lastQ ;
18
19 // s e t e l i g i b i l i t y e ( s , a ) = 1
20 e l i g i b i l i t i e s . setValue ( la s tS , lastA , 1) ;
21
22 // update ac t i on va lue s : Q( s , a ) = Q( s , a ) + α ∗ ∆ ∗ e ( s , a )
23 act ionValueFunct io n . o f f s e t A l l V a l u e s (α ∗ ∆, e l i g i b i l i t i e s ) ;
24
25 // fade out e l i g i b i l i t y va lue s
26 e l i g i b i l i t i e s . mul t ip lyAl lVa lues (γ ∗ λ) ;
27
28 // r e s e t ( s , a )
29 s = currentS ;
30 a = nextA ;
31 }

Code 4.2: Stylized implementation of Sarsa(λ) in ACTSarsa. All variables highlighted
in red are specified when constructing an instance of ACTSarsa (cf. figure 4.11). This
fragment of code is inspired by pseudo-code from the book “Reinforcement Learning:
An Introduction” by Sutton and Barto [SB98, p. 181].
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Active components – generally robots – can be equipped with a task. This task
controls the component, e.g. by the activation of basic behaviors, and it can thus
be interpreted as the component’s “brain”. Because the assignment of this “brain” is
reserved to the world factory that constructs the component, a component’s task cannot
be changed in simulation. Nevertheless, by the assignment of a task that contains other
tasks to delegate control to, an active component is able to switch between tasks on
its own. Note that this does not mean that Autonomous Task Allocation is used: the
selection of tasks can still be controlled by signals received from other components,
which would make the underlying mechanism a heteronomous one.

This chapter presented the Swarmulator, a simulation platform that was imple-
mented in the context of this thesis. The next chapter uses this platform to implement
and compare different approaches for solving Task Allocation in a concrete foraging
scenario.



Chapter 5

Experiments

This chapter describes how the Swarmulator is used to experiment with different ap-
proaches to solve Task Allocation in a concrete scenario. Basically, the scenery is
inspired by nature: like a swarm of bees or ants, the robotic swarm has to collect food
items while concurrently managing an adequate nest temperature. This additional
temperature aspect makes the scenario more complex than other foraging missions in
literature.

First, the scenery is described in detail. This includes the definition of the ex-
perimental world and its components, the description of the global mission and the
derivation of tasks that can be allocated. Second, some approaches are presented that
are assumed to solve the Task Allocation problem. Finally, some of these approaches
are tested and compared in static and dynamic environments.

5.1 Scenery

Before Task Allocation approaches can be defined, the scenery has to be set. The
experimental world contains at least one nest that is the home of a robotic swarm and
target location for foraging. As long as its temperature is hold at an adequate level,
the nest is able to process food to energy. Food items emerge from the environment at
different rates and at different positions.

A swarm consists of five robots that have to choose from four different kinds of
tasks: forage, heat up, cool down and rest. All actions – except rest – consume energy.
Because food items are the only source of energy in the environment, forage is the only
task that may have a positive energy balance – but only if it is executed successfully
and if the nest’s temperature is at an adequate level.

First of all, the world and its components are described. This includes the definition
of properties for both the environment and the robots. After that, the global mission
is specified, which gives detailed information about when the swarm is successful, and
when it is not. Finally, a concrete set of complex tasks is defined that serves as a basis
for the Task Allocation problem.

5.1.1 World and Components

This section describes the properties of the world and its components. The experimental
world features one type of robot, which is realized by an active component. All other
components and the world’s properties are defined as the swarm’s environment.

77



78 CHAPTER 5. EXPERIMENTS

5.1.1.1 Environment

The environment consists of two basic component types: nests and food items. The
position of the nest is fixed but the position and frequency of food appearance may
change over time. Additionally, the environment features physical temperatures that
influence each other.

The world’s temperature is defined by an aerial temperature that influences the
temperature of all covered components. Components that are cooler will receive thermal
energy and heat up, whereas components that are hotter will loose thermal energy and
cool down.

Note that the aerial temperature cannot be influenced by the world’s components.
The air just serves as a constant source or sink for thermal energy that drives com-
ponents to the world’s temperature. Nevertheless, the aerial temperature may change
according to the world’s dynamics. Like in reality, the temperature may, for example,
follow a day/night cycle.

The nest is the most important passive component of the environment. It has a tem-
perature that is basically influenced by the world’s temperature but may be influenced
by other components’ temperatures, too.

The optimal temperature of the nest amounts 20 ◦C. In a range of ± 2 ◦C, the nest
is able to assimilate food items to increase its internal energy. The speed of assimilation
depends on the offset from the optimal temperature: the lower the offset, the higher the
speed. In the world’s view, the process of food absorption is illustrated by attraction
to the center of the nest. When the food item reaches the center, it fades away and
counts as assimilated.

Each time a food item is assimilated, the nest’s energy is increased by 100 J. Below
18 ◦C and above 22 ◦C, the nest is unable to process food into energy. Food that is
dropped in the nest but not attracted to the center will dissolve after some time.

Food items appear in special areas that deploy prey at a fixed rate. The position
of appearance is random but limited to the covered space. Food items that are not
collected by robots dissolve after some time.

This thesis works with two types of food areas: a large belt-like area around the
nest and a relatively small circle that is equally sized as the nest. The belt represents
a rich environment where food can be found easily. In contrast, the circle is used in
sparse environments that limit the appearance of food to precise positions.

Like the world temperature, the density of food may be influenced by the world’s
dynamics. This can be done by rearrangement of the food sources. The environment
might, for example, switch between rich and sparse food distribution by replacing a
present food belt with a small circle.

After the definition of the environment, the swarm’s robots and their abilities can
be described.

5.1.1.2 Robots of the Swarm

For the sake of simplicity, this thesis works with a homogeneous swarm of robots.
Although all robots have the same capabilities, concrete Task Allocation approaches
may limit themselves to a subset of abilities. To ease the implementation, collisions are
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not considered. As a result, collision avoidance behavior can be omitted. Furthermore,
the communication between robots is limited to light signals that can be sensed in a
short range.

To be able to forage, each robot needs some form of movement and food retrieval
behavior. Additionally, it must be able to manipulate its own temperature in order to
influence the nest’s temperature. Furthermore, because the tasks forage, heat up and
cool down need energy, robots have to be equipped with a personal battery. As a result,
each robot is capable of the following basic behaviors:

• Head to location: The robot autonomously moves to the given location in the
world. If no target is given, the robot stops. Movement costs some energy and
is internally implemented by temporal limited speed, acceleration, braking and
rotation.

• Take food item: This behavior removes a food item from the world and puts it
in the robot’s inventory. Taking a food item fails if there is no item in range or
the robot already carries one. Prey in the inventory cannot dissolve.

• Drop food item: If the robot carries prey, it drops the food item at its current
position. Dropped food dissolves after some time.

• Recharge: Recharging the robot’s battery drains energy from the energy balance
of the nest. If the robot is outside the nest, recharge will fail.

• Heat up / cool down: By draining energy from the battery, the robot is able to
increase or decrease its thermal energy at a limited rate. If the battery is empty,
thermal energy, and thus temperature, cannot be influenced anymore.

• Set light color: The robot is able to set the color of its light. This enables the
robots to communicate via simple light signals.

A robot is always able to head back to the nest because it knows the nest’s location.
In a real life experiment, this could be implemented by heading to a specific light source.
Additionally to the nest’s location, each robot is equipped with the following sensors:

• Food sensor: Senses food items in a fixed radius around the robot. Returns a
list of positions.

• Light sensor: Senses light signals of near other robots. Returns a list of sensed
colors.

• Nest temperature sensor: Retrieves the nest’s temperature if the robot is
situated in the nest.

• Nest energy sensor: Retrieves the current energy level of the nest if the robot
is situated accordingly.

In principle, these abilities allow the robot to search food, retrieve it to the nest and
manage the nest’s temperature. The next section concretizes in which circumstances
the swarm’s behavior can be called successful.

5.1.2 Global Mission

The global mission of the swarm is to gather food items from the environment, retrieve
them to the nest and maintain the nest’s temperature to ensure that prey can be
processed to energy.



80 CHAPTER 5. EXPERIMENTS

In fact, this formulation is not precise enough to create optimal Task Allocation
approaches because it does not specify if nest temperature has to be maintained all the
time or only if the environment contains enough food to justify the effort. This issue
is clarified by the following specification:

The global mission of the swarm is to maximize the energy level of the nest.

This formulation includes that it is counterproductive to heat up or cool down if
there is not enough food available. Because the swarm does not know if the environment
is rich or sparse, it always has to spend some energy for exploration.

A swarm is said to perform better than another one if it is able to achieve a higher
energy level in the long run. Note that simulation is not able to prove if one swarm
beats the other in the limit. Often, it is hard to decide if the algorithm is unable to
emerge a better allocation scheme or if emergence just takes more time.

Swarms that perform bad over a long period of time can be accounted impractical.
Especially when the nest’s energy balance drops so much that the deficit could never
be compensated by a higher starting energy, the swarm’s approach can be considered
as useless, at least in the tested scenario.

5.1.3 Tasks

In order to ease the definition of comparable Task Allocation approaches, the following
subsections define tasks that abstract from the basic behavior set of the robots. For
the sake of simplicity, all tasks begin in the nest, end in the nest and are finished by a
complete recharge of the robot’s battery.

5.1.3.1 Basic Tasks

The basic task set defines behaviors that are essential for the accomplishment of the
global mission. None of these tasks can be removed without risking swarm failure in
typical environments.

• Forage is a complex behavior that performs a random walk for finding food items
in the environment. The task succeeds if a food item can successfully be retrieved
to the nest. If the robot moves too far away from the nest, it aborts its search for
food and returns to the nest. In this case, foraging fails. In a rich environment
where food is near to the nest, foraging takes about 10-20 s of simulation time
and consumes about 2 J of energy.

• HeatUp uses the corresponding basic behavior for a fixed amount of time (10 s).
In comparison to foraging, heating costs more energy (5 J).

• CoolDown is implemented analogous to HeatUp.

• Rest is a very simple task that does not activate any behavior for a short period
of time (5 s).

Table 5.1 gives an overview of execution times and energy consumption. The amount
of energy used in foraging is bounded by the robot’s battery capacity, which is 15 J.
Remember that a successfully assimilated food item increases the nest’s energy balance
by 100 J.
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Basic task Execution time Consumed energy

Forage > 10 s 1-15 J

HeatUp 10 s 5 J

CoolDown 10 s 5 J

Rest 5 s -

Table 5.1: Overview of execution times and consumed energy of basic tasks.

5.1.3.2 Additional Tasks

To improve Task Allocation, some mechanisms might need additional tasks to execute.
These tasks are optional and their use is limited to appropriate approaches.

• SetColor: SetColor wraps the corresponding basic behavior. This task needs
only one step of simulation to succeed. It is used for simple communications via
the robot’s light signal.

• OrientN/E/S/W: Each of these four tasks orients the robot towards a different
compass point. The inclusion of rotation tasks could improve the swarm’s effi-
ciency, especially in scenarios where food can only be found in specific directions.

These tasks serve as examples for tasks that are not necessary for mission accom-
plishment but contribute to the design of more efficient solutions. In fact, the basic task
Forage performs poorly and could be implemented in a much better way. Because this
thesis sets a focus on solving Task Allocation and not on optimizing foraging, Forage
remains untouched.

5.2 Approaches

This section presents different approaches to solve the Task Allocation problem in
the given foraging scenario. According to the taxonomy presented in chapter 3, the
approaches are classified by the underlying mechanism, which is either heteronomous,
autonomous or hybrid.

Within the scope of this thesis it is not possible to test all approaches that seem to be
promising. Instead, a focus is set on simple adaptive approaches and on reinforcement
learning. Nevertheless, this section sketches other approaches, too.

5.2.1 Heteronomous Task Allocation

Heteronomous Task Allocation uses communication in order to negotiate about the
allocation of tasks. Although it is possible to implement arbitrarily complex commu-
nication protocols that are solely based on light signals, approaches that need such
protocols should be excluded from consideration. In the context of this thesis, only
very simple forms of communication are discussed further.

According to section 3.2, Heteronomous Task Allocation relies on decision making
by some form of leader and splits into Centralized and Distributed Task Allocation.
These categories are investigated in the following subsections.
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5.2.1.1 Centralized Task Allocation

In Centralized Task Allocation, only one single leader exists that controls the whole
swarm. Like a queen in a bee colony, this controller plays a superior role for the swarm’s
success. Because all tasks are finished inside the nest, the leader can reside there. All
other robots are directed by light signals of the queen-like entity.

Unfortunately, the leading robot is not equipped with all-embracing sensors. There-
fore, omniscient control is not possible. Although the leader could manage some form
of blackboard that contains information gathered by the working robots, blackboard
control is excluded from consideration because the needed signalling from worker to
leader complicates communication.

Communication is limited to one direction: from the central leader to all near
workers. Basically, four light signals are needed, each allocating one of the basic tasks
Forage, HeatUp, CoolDown and Rest.

Centralized Reinforced Control. This thesis proposes to use on-line reinforcement
learning to control the central leader. The queen-like entity learns to command the
swarm by trial and error in light switching whereas the workers are hard-wired and
simply activate the task that corresponds to the sensed light signal.

As presented in section 4.2.3.3, the Swarmulator features the task ACTSarsa, which
is an implementation of Sarsa(λ), a temporal difference learning control algorithm
using eligibility traces (cf. section 2.3). Sarsa(λ) is an on-policy control method that is
expected to have a better on-line performance than off-policy methods like Q-learning,
which is the most common method used in literature.

In order to effectively use ACTSarsa, the underlying elements of reinforcement learn-
ing and some parameters – the step-size parameter α, the discount-rate γ and the
decay-rate λ – have to be specified. This includes the definition of actions and states,
the specification of an action-value function and an eligibility function, the construction
of a reward function and the selection of a policy.

Because the states are dependent on the nest’s temperature, which is a continuous
value, this thesis implements two different variants of ACTSarsa:

1. ACTDiscreteSarsa: This approach uses a discrete set of five states for learning:
in a range of 0.4 ◦C from the nest’s optimal temperature, the state is considered
OK ; from there up to an offset of 2 ◦C, the state is named LOW and HIGH
respectively; higher offsets from the optimal temperature deactivate the assimi-
lation of food and are therefore called TOO-LOW and TOO-HIGH respectively.
As a result, the action-value function and the eligibility function can simply be
implemented in a tabular form, storing a value for each possible state-action pair.

2. ACTKernelSarsa: This approach uses function approximation to face the con-
tinuous temperature. Although the action-value function is implemented in a
tabular form (defined by a grid size of 0.4 ◦C), the interpretation of these values
is different than in the discrete approach. To get the actual Q-value Q(s, a) for
action a in state s (with temperature t), the values of all table cells for action a
and temperatures in range [t−1.2, t+1.2] are accumulated with respect to weights
that are defined by the area under an Epanechnikov kernel that virtually spans
the temperature range (cf. figure 5.1). In order to adapt the Q-values correctly,
the eligibility function is defined in a way that spreads an eligibility value of 1 to
an according raster of temperature-states in range [t− 1.2, t+ 1.2].
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Figure 5.1: Exemplary utilization of the Epanechnikov kernel in ACTKernelSarsa: the
actual Q-value for selecting action a at 20.1 ◦C is calculated from the values tQ that
are saved in a raster of 0.4 ◦C. The state s47 corresponds to a temperature in range
[18.6, 19.0), s48 to [19.0, 19.4), and so on.

Table 5.2 summarizes all reinforcement parameters that are commonly used in both
the discrete and the kernel approach. In both cases, the action set is discrete and
contains four commanding tasks, each setting a task-specific color for 10 seconds. Af-
ter finishing one of the actions, the observed reward is constructed from the perceived
sensory data. Because the global mission solely claims to optimize the nest’s energy
balance, the reward could simply be the increase of the nest’s energy during the ex-
ecution of the last task. Unfortunately, this will most likely inhibit learning at very
high or very low nest temperature: as long as the nest is unable to consume food, there
would be no positive reward at all. To prevent this dead end, where it is impossible to
say whether heating or cooling is better, the reward incorporates the change towards
the optimum nest temperature. In other words: the decision maker is rewarded by
both energy accumulation and temperature improvement. For action selection, both
approaches use an ε-greedy policy. All parameters are set to values that seem to be
promising for reasonable learning.

5.2.1.2 Distributed Task Allocation

Distributed Task Allocation, as presented in section 3.2.3, features approaches where
the leader role is not fixed. The most common mechanisms in this category use market-
based techniques, especially auctions.

Market-based approaches are very well suited for scenarios where robots should
negotiate about who should execute a task. In the given scenario, where the same tasks
have to be accomplished over and over again and where the fitness of each robot does
not play a superior role, market-based approaches do not seem to be very promising.
Anyway, the communication protocols needed for the implementation of auctions or
similar negotiation procedures are difficult to implement via simple broadcasting of
light signals.
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Element Implementation Description

Actions

action name execution time (color)
CommandForage 10 s (green)
CommandHeatUp 10 s (red)
CommandCoolDown 10 s (blue)
CommandRest 10 s (gray)

Reward
function

r = (increase of energy) + enow = current nest energy
(decrease of failure from 20 ◦C) elast = last nest energy

r = (enow − elast) + tnow = current nest temperature
(|tlast − 20.0| − |tnow − 20.0|) tlast = last nest temperature

Policy ε-greedy with ε = 0.1
selects the greedy action at 90 %
and a random other action at 10 %
of the time

α α = 0.1
step-size parameter, limits adapta-
tion to target Q-value (supported
by recently observed reward)

γ γ = 0.9
discount-rate, limits the amount of
future reward incorporated in Q-
values

λ λ = 0.5
decay-rate, limits the length of eli-
gibility traces

Table 5.2: Overview of used elements and parameters in both the discrete Sarsa and
the kernel Sarsa approach.

Virtual blackboards do not necessarily need a sophisticated communication pro-
tocol. Robots could simply indicate their state by emitting a light signal. By the
accumulation of state signals, robots get an idea of what their neighbors are doing
which enables them to make better decisions. if, for instance, a robot senses that some
other robots recently started to cool down the nest, the robot might refrain from doing
the same.

Although virtual blackboards are promising for information accumulation, the ac-
tion selection rules that are based on the blackboard information have to be designed
carefully.

This thesis does not follow up Distributed Task Allocation in the given foraging
scenario. Autonomous mechanisms that do not need any form of communication are
much more interesting for further investigation.

5.2.2 Autonomous Task Allocation

Autonomous Task Allocation relies on the emergence of complex swarm behavior from
individuals’ actions. Each robot decides on its own what to do next, solely based on
its sensory data. Explicit communication is not used.

In the context of the given foraging mission, complex behavior of the swarm could
include intelligent division of labor. If one robot is sufficient to maintain the nest’s
temperature, then it may be the best solution to let one single robot do this job while
all other robots try to forage.
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5.2.2.1 Rule-based Control

As already discussed, rule-based control is a very vague approach that can be seen as a
superclass for all possible mechanisms. As a result, this category name should only be
used if rules are defined from scratch without using any approach that automatically
defines a set of rules.

In fact, rule-based control is already in use: the task Forage coordinates movement
and food grabbing / dropping with simple rules that use the food sensor and the location
of the home nest.

5.2.2.2 Threshold-based Control

Threshold-based control uses some sort of stimulus that is raised when a task demands
execution. As soon as the stimulus passes a given threshold, the corresponding task is
activated. A threshold-based approach for solving the given Task Allocation problem
could be defined as follows.

Both tasks HeatUp and CoolDown call for activation at a specified temperature.
Heating should occur when the nest’s temperature gets critically low whereas cooling
should be activated when temperature gets too high. By dispersing the actual acti-
vation thresholds, the robots can be prevented from activating the same action all at
the same time. Alternatively, a sigmoid curve can be used to define the activation
probability dependent on the stimulus. As described in section 3.3.3.2, the threshold
then determines which stimulus is needed to get a chance of 50 % or higher.

The tasks Forage and Rest are less intuitive to be activated by a threshold. One
way could be the definition of a stimulus that is incremented each time foraging is not
achieved. A corresponding threshold would then represent the amount of time that
needs to elapse before foraging is activated the next time. This threshold should, of
course, be adapted dependent on the success in foraging. If foraging succeeds, the
threshold can be decremented, if foraging fails, the threshold should be incremented.
This amount of decrement / increment could be dependent on the number of successes /
fails. This is already very much the same as the Variable Delta Rule proposed by Labella
et al. [LDD04a, LDD04b, Lab07], except that they adapt a probability value instead
of a waiting time.

Up to this point, three different stimuli have been defined: one activating HeatUp,
one activating CoolDown and one activating Forage. Rest is set as the default task
and thus activated if no other task demands execution. Because more than one task
could demand execution, a decision rule has to be defined, for example by prioritizing
temperature maintenance over foraging. Alternatively, the task to execute could be
selected randomly.

Although this threshold-based approach seems to be promising, it is not included
into the experiments in this thesis because a similar but simpler approach based on
motivations should be tested instead.

5.2.2.3 Probabilistic Control

Probabilistic control selects tasks based on a given probability distribution. The sim-
plest way of achieving such a distribution is by defining a motivation value for each
task that represents the weight of the task. Each task’s probability is then defined as
the fraction of overall motivation that demands the execution of the task.
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Finished
Task

Result Adaptation of Motivation

Forage

success
Forage m = m+ 0.4
Rest m = m− 0.4

failure
Forage m = m− 0.05
Rest m = m+ 0.05

any any
HeatUp m = −(nestTemp− 20)/2
CoolDown m = (nestTemp− 20)/2

Table 5.3: Adaptation in motivation-based approach.

This thesis follows the motivation-based approach and defines simple adaptation
rules that should be sufficient to control the swarm in different environments. Each
motivation is initially set to 0.5 and may vary in the range [0, 1]. The only exception
from this rule is the task Forage which at least has got a motivation value of 0.1.
Motivation values are updated according to table 5.3. Note that success in foraging is
rewarded with much more motivation than fails in foraging are punished. This results
from the fact that one single food item returns much more energy than a single foraging
run costs.

Opposite to the threshold-based approach described in the last section, the moti-
vation-based approach does not need to define an additional selection rule if multiple
task are demanded equally. The motivation values are sufficient to describe the chance
of each task. At least in this context, the motivation-based approach can be called
simpler than the threshold-based one.

Note that both the threshold-based and the motivation-based approach have a com-
mon disadvantage: they always maintain the nest’s temperature even if there is no food
at all. This problem could be addressed by using the food sensor to sense if there is
food that demands the nest temperature to be maintained. Due to the increase in com-
plexity, this modification should only be considered if it is really needed in the actual
experiments.

5.2.2.4 Decentralized Reinforced Control

Decentralized Reinforced control is very similar to its centralized counterpart (cf. sec-
tion 5.2.1.1). In centralized reinforced control, a central leader learned the allocation
of commanding tasks and the workers were hard-wired. In this section, no central
leaders exists and each worker has to learn itself what task to execute under which
circumstances.

In order to learn the selection of tasks, each worker is equipped with an implemen-
tation of the task ACTSarsa. Like in the centralized counterpart, two possible variants
are available:

1. ACTDiscreteSarsa: A discrete set of five states is used for learning: TOO-LOW,
LOW, OK, HIGH and TOO-HIGH.

2. ACTKernelSarsa: Each temperature value has a unique state. Nevertheless, Q-
values are stored in a tabular form, using a grid size of 0.4 ◦C. To get the actual
Q-value for an arbitrary state, all values on the raster in a range of three cells are
combined using fractions of an Epanechnikov kernel that is centered at the given
state’s temperature.
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The autonomous version copies most of the values used in the centralized learning
approach (cf. table 5.2). Of course, the action set of commanding tasks is replaced by
the tasks Forage, HeatUp, CoolDown and Rest. Because these tasks do not have equal
execution times, the reward function has to be normalized. This is done by dividing
the reward value by the duration of the last executed task.

Autonomous learning may be better than heteronomous learning but it doesn’t
have to. On the one hand, the autonomous version has the potential to learn more
efficient solutions by utilizing each worker individually. On the other hand, workers
are frequently rewarded for the actions of other robots, which slows down the learning
process due to misinterpreted rewards.

5.2.3 Hybrid Task Allocation

Hybrid Task Allocation combines mechanisms from both Autonomous and Heteronomous
Task Allocation. This section presents exemplary approaches that build upon the ap-
proaches presented in the last sections.

5.2.3.1 Interlaced Control

Interlaced control mixes autonomous and heteronomous methods to create novel ap-
proaches. An example for such an approach would be the deployment of workers that
command foraging if they retrieved a food item successfully. Other workers are forced
to follow such a command but decide on their own what to do next if no commanding
signal is observed.

5.2.3.2 Side-by-side Control

Side-by-side control combines fully developed mechanisms to form hybrid approaches.
This category can be split into alternative and concurrent control.

Alternative Control. In alternative control, individuals choose from a set of ap-
proaches and follow one of them. This selection can be done in advance by deploying a
heterogenous swarm. Alternatively, the robots may use a learning method to find the
best mixture of approaches on their own.

This thesis follows the simpler approach, deploying a heterogeneous swarm that con-
sists of two robots using the motivation-based approach presented in section 5.2.2.3 and
three robots commanded by a queen-like entity that learns commanding by following
kernel Sarsa, as described in section 5.2.1.1.

Concurrent Control. In concurrent control, individuals follow multiple fully de-
veloped mechanisms at the same time. An example for such an approach is the use
of centralized reinforced control where a leader learns to command HeatUp, CoolDown
and “AnythingElse”. If the workers observe the latter signal, they decide on their own
whether to execute Forage or Rest. This autonomous decision could be made by a
motivation-based approach.

This section presented different approaches to face the Task Allocation problem in
the given foraging scenario. The next sections simulates and compares a selection of
them in static and dynamic scenarios.
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Approach Name Category
Deployed
Robots

Description

hR
Heteronomous
Random

-
1 leader and
5 workers

leader randomly com-
mands; workers obey

hDS
Heteronomous
Discrete Sarsa

centralized
reinforced
control

1 leader and
5 workers

leader learns commanding
based on five discrete nest
states; workers obey

hKS
Heteronomous
Kernel Sarsa

centralized
reinforced
control

1 leader and
5 workers

leader learns commanding
based on continuous nest
states; workers obey

aR
Autonomous
Random

- 5 workers
each worker randomly se-
lects tasks

aM
Autonomous
Motivation

probabilistic
control

5 workers
each worker follows its mo-
tivations for task selection,
motivations are adapted

aDS
Autonomous
Discrete Sarsa

decentralized
reinforced
control

5 workers
each worker learns the se-
lection of tasks based on
five discrete nest states

aKS
Autonomous
Kernel Sarsa

decentralized
reinforced
control

5 workers
each worker learns the se-
lection of tasks based on
continuous nest states

hyb
Hybrid
(hKS + aM)

alternative
control

1 leader and
5 workers

the leader and 3 workers
follow Heteronomous Ker-
nel Sarsa; 2 workers follow
Autonomous Motivation

Table 5.4: Summary of approaches used in the experiments.

5.3 Simulation and Comparison

This section deploys swarms in static and dynamic scenarios. Both scenario types are
needed to test whether the used approaches to the Task Allocation problem can handle
different environmental settings or not.

For simulation, the Swarmulator is used (cf. chapter 4). A world factory is imple-
mented that is able to create a virtual world for each experimental configuration. Both
scenario and Task Allocation approach are defined by the world’s settings. Through
the course of each simulation, data is written to csv-files. For evaluation of this data,
the statistical software R [R D11] is used.

Because testing all approaches that are sketched in section 5.2 would go beyond the
scope of this thesis, a focus is set on the heteronomous and autonomous reinforcement
learning approaches and on the autonomous motivation-based approach. For proof
of concept, a hybrid version composed of centralized reinforced control (using kernel
Sarsa) and motivation-based control is also considered. For comparison with some kind
of worst case strategy, random approaches are added, too. As shown in table 5.4, this
results in a total of eight different approaches to simulate and compare.
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(a) rich environment (b) sparse environment

Figure 5.2: Static scenarios. In (b) a heteronomous swarm is deployed.

5.3.1 Static Scenarios

In static scenarios, the world’s temperature and the density of food is defined by con-
stant parameters. Two different environmental settings are investigated: a rich envi-
ronment, which offers enough food that all robots can forage successfully, and a sparse
environment, which emphasizes the need to Rest and which barely provides enough
food to justify maintenance of the nest’s temperature.

Figure 5.2 shows both static scenarios. In each scenario, the world’s temperature is
set to constant 25 ◦C. Initially, the nest’s temperature is set to 20 ◦C. After 30 minutes
of simulated time, the nest’s temperature has already exceeded the critical value of
22 ◦C (cf. figure 5.2(a)). As a result, a deployed swarm has to adapt quickly in order
to sustain the assimilation of food.

5.3.1.1 Rich Environment

The rich environment provides food in a belt around the nest. Basically, the deployed
swarm should learn to forage most of the time and to cool down the nest if needed.

For each approach, 10 experiments are carried out for 24 hours of simulated time.
The boxplots in figure 5.3 give an overview of the nest’s energy balances that result
from the simulations. This serves as a first impression of how good each approach
performs. The following conclusions can already be made:

1. As expected, the random approaches perform worst.

2. The motivation-based approach has the best performance, closely followed by the
hybrid approach.

3. All reinforcement learning approaches have a very high fluctuation in perfor-
mance. Some experiments perform very well whereas others perform very bad. As
indicated by the thick line, which represents the median, the use of Autonomous
Kernel Sarsa even resulted in a negative energy balance in at least half of its
simulations.



90 CHAPTER 5. EXPERIMENTS

●

●

●

●

●
0

20
0

40
0

60
0

80
0

approach

hR hDS hKS aR aM aDS aKS hyb

Static Rich Environment
Nest's energy balance (after 24 hours)

en
er

gy
 [k

J]

Figure 5.3: Boxplot of the nest’s final energy balance for each approach in the rich
environment.

The most important questions that arises from these observations is why the re-
inforcement learning approaches fail so often. To investigate this problem, the course
of the nest’s temperature is analyzed. Figure 5.4 shows such courses using the exam-
ple of Heteronomous Discrete Sarsa. Apparently, the approach runs into a trap when
exceeding the critical temperature of 22 ◦C too much. Although the leading entity is
rewarded for getting closer to 20 ◦C, it does not seem to learn it.

This inability can be related to the used policy: the ε-greedy policy with ε = 0.1
selects the greedy action in 90 % of the time and randomly chooses from the non-greedy
actions in 10 % of the time. Although CommandCoolDown promises a higher reward than
CommandHeatUp, both tasks are selected with equal probability if they are both non-
greedy. In fact, CommandRest is quickly learned to be the greedy action when the
critical temperature is exceeded and no more food can be assimilated.
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Figure 5.4: Examples for course of nest’s temperature: all three runs are simulated in
the rich environment with a swarm using Heteronomous Discrete Sarsa.
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Figure 5.5: Boxplot of the nest’s final energy balance for each approach in the rich
environment (extended version including reinforcement learning approaches using a
softmax policy, as indicated by the “s”, instead of an ε-greedy one).

In order to solve this problem, all reinforcement learning approaches are alterna-
tively equipped with a softmax action selection policy. This policy weights all actions
dependent on their Q-values and thus grades the non-greedy actions, too. To ensure ex-
ploration, the action with the lowest Q-value has at least a probability of 2.5 %. In the
concrete problematic case, the policy is expected to select the task CommandCoolDown

with higher probability than the heating task.

Figure 5.5 shows the final nest’s balances for all approaches again but extended
by the alternative reinforcement learning approaches using the softmax policy. Appar-
ently, nearly all new approaches perform better than their ε-greedy counterparts. As
exemplarily shown in figure 5.6, the softmax policy helps to get out of the critical tem-
perature range. Only Autonomous Discrete Sarsa does not seem to profit in the given
time. This may result from the fact that each robot selects its tasks autonomously
which makes it hard to relate rewards to own actions: if, for instance, one robot exe-
cutes CoolDown and another one executes HeatUp concurrently, both robots will have
difficulties with learning from the observed – unknowingly accumulated – reward.

In order to test whether the approaches have adapted to the given scenario, the
selection of tasks in the final phase of simulation is worth a look. Figure 5.7 illustrates
the tasks’ distribution during the 24th hour. In all simulations of Heteronomous Discrete
Sarsa (hDS), for example, the fraction of HeatUp in the final hour was below 25 %, a
level that is indicated by the horizontal dotted line. Except in one simulation run,
the fraction was even clearly below 20 %. Large boxes, like the one for Rest in hDS,
indicate that the individual runs performed very differently. Note that the data points
for each task are dependent to each other because the fractions for each run sum up to
100 %. Although this makes the depiction relatively vague in describing the distribution
of tasks, some interesting observations can still be made:
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Figure 5.6: Examples for course of nest’s temperature: all three runs are simulated
in the rich environment with a swarm using Heteronomous Discrete Sarsa (equipped
with softmax policy).

1. Apparently, only the Autonomous Motivation approach is able to disable the se-
lection of the – in this scenario – unnecessary task HeatUp. This comes from
the fact that all other depicted approaches use some form of reinforcement learn-
ing that makes the robots continuously select all tasks in order to explore their
possibilities.

2. Beside the hybrid approach, Heteronomous Discrete Sarsa (with softmax policy),
Heteronomous Kernel Sarsa (with ε-greedy policy), and Autonomous Kernel Sarsa
(with softmax policy) appear to be the only reinforcement learning approaches
that clearly discriminate between the selection of HeatUp and CoolDown.

In summary, all approaches – except the random ones – adapt to the hostile world
temperature, at least by increasing the chance to Rest.

Figure 5.8 gives an alternative view of the approaches’ performances. In contrary
to the boxplots in figure 5.5, this type of chart contains the mean value of the nest’s
energy balance (remember that the thick line in a boxplot marks the median but not the
mean). On average, the centralized versions of reinforcement learning performed better
than their autonomous counterparts. Note that the difference of the pairs hDS/aDS and
hKSs/aKSs is much smaller than the difference of the pairs hDSs/aDSs and hKS/aKS.
Also note the massive variation between (nearly) negative and very high levels of energy
in all reinforcement learning approaches.

Conclusion. Within 24 hours of simulation in the static rich environment, the Au-
tonomous Motivation approach is, without a doubt, the best suited approach. In fact,
this approach even shows that the rich environment does not contain enough food to
make each Forage successful. Otherwise, the motivation for resting would reach zero
and render the selection of task Rest impossible (cf. figure 5.7). Within the scope of
their possibilities, the reinforcement learning approaches also perform well but they
tend to fail if the ε-greedy policy is used and tend to need much time for learning if
the softmax policy is used. Note that this conclusion only applies for the 24 hours of
simulation. Longer runs will probably strengthen all reinforcement learning approaches.
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Figure 5.7: Boxplots for the distribution of tasks in the final hour of simulation in the
rich environment. Random approaches are omitted because their depiction just shows
the expected equal distribution.
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Figure 5.8: Minimum, mean and maximum of the nest’s final energy balance for each
approach in the rich environment.
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Figure 5.9: Minimum, mean and maximum of the nest’s final energy balance for each
approach in the sparse environment.

5.3.1.2 Sparse Environment

The sparse environment provides very little food in a circular area at the left side of the
nest. The amount is still fair enough to justify maintenance of the nest’s temperature.

For each approach, 10 experiments are carried out for 24 hours of simulated time.
The summary in figure 5.9 shows the minima, means and maxima of the nest’s final
energy balance, grouped by the used approach. In comparison to the corresponding
summary of the rich environment (cf. figure 5.8), this illustration suggests that the
approaches tend to a more definite solution because the difference between minimum
and maximum is low.

In fact, all approaches finally tend to Rest, as shown in figurek5.10. This is an
understandable decision because the environment does not contain much food. Unfor-
tunately, only the approaches Autonomous Motivation and Hybrid seen to be able to
profit from the collection of food items. All other approaches waste more energy in
exploration than they could possibly gather. As a result, most reinforcement learn-
ing approaches even don’t bother about maintaining the nest’s temperature. Their
execution rates of HeatUp and CoolDown are very similar.

Looking at figure 5.10 reveals that both Heteronomous Discrete Sarsa and Het-
eronomous Kernel Sarsa do care about the nest’s temperature if the softmax policy
is used: CoolDown is selected much more often than HeatUp. Additionally, Forage is
selected quite often, which lets assume that both approaches learned to spend energy
in order to get food. This assumption is supported by the amount of assimilated food,
as depicted in figure 5.11.

Conclusion. Within 24 hours of simulation in the static sparse environment, the
Autonomous Motivation approach is, without a doubt, the best suited approach. This
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Figure 5.10: Boxplots for the distribution of tasks in the final hour of simulation in the
sparse environment.
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Figure 5.11: Boxplots for assimilated food at the end of the simulation in the sparse
environment.



96 CHAPTER 5. EXPERIMENTS

result is not surprising because there is still a fair amount of food available. Interest-
ingly, both heteronomous Sarsa approaches that are equipped with the softmax policy
(hDSs and hKSs), and even Autonomous Kernel Sarsa with softmax policy (aKSs) a
little, tend to maintain the nest’s temperature in order to assimilate food. Although
the energy needed for exploration inhibits to reach a positive balance, successful forag-
ing at least slows down the decrease of energy. Even the best performing swarm using
reinforcement learning couldn’t avoid a negative trend in energy.

5.3.2 Dynamic Scenarios

In dynamic scenarios, the swarm’s environment changes during a single simulation run.
As a result, the robots have to adapt continuously in order to perform well. In this
thesis, two different types of dynamics are tested: the first environment features a slow
and continuous change of the world’s temperature whereas the second environment
abruptly changes between a rich and a sparse food density.

5.3.2.1 Dynamic Temperature

Regarding food density, the dynamic temperature environment is equal to the rich
environment presented in section 5.3.1.1: a very sufficient amount of food continuously
appears in a belt around the nest.

Other than in the rich environment, the world’s temperature is not constant but
follows a sine wave. Starting with a value of 20 ◦C, the aerial temperature changes in
the interval of 15 to 25 ◦C. The period is set to 12 hours of simulation.

For each approach, 10 experiments are carried out for 36 hours of simulated time.
This duration corresponds to three periods of the temperature’s dynamics. It can be
expected that the robots learn from failures in the first period and perform better in
the following periods.

Figure 5.12 illustrates the performance of all approaches. None of them performs
badly, even the random approaches are able to maintain a positive balance, at least on
average. This comes from the fact that – every six hours – the robots do not need to
maintain the nest’s temperature because the world’s temperature already changes to
the range where food assimilation is possible.

Although the motivation-based approach still performs best, the reinforcement
learning methods seem to catch up. It is noticeable that the ε-greedy policy tends
to work a little better than the softmax policy. The biggest difference between the
two policies can be found in Autonomous Discrete Sarsa. This observation reminds
of the rich environment where the softmax policy improved all reinforcement learning
approaches except Autonomous Discrete Sarsa (cf. figure 5.8).

In contrast to the rich environment with its constant temperature, the dynamic
temperature environment supports the reinforcement learning approaches. On the one
hand, the world’s temperature changes so slow that most swarms can adapt without any
difficulties. On the other hand, even if a swarm fails to hold the optimal temperature,
the robots get a second chance. At least, none of the reinforcement learning methods
seems to make the same mistake twice. Roughly speaking, the world’s dynamics guide
the robots to the critical temperature areas where they can learn the most important
thing: CoolDown at ≤ 18 ◦C and HeatUp at ≥ 22 ◦C.
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Figure 5.12: Minimum, mean and maximum of the nest’s final energy balance for each
approach in the dynamic temperature environment.

Conclusion. Within 36 hours of simulation in the dynamic temperature environment,
all approaches, except the random ones, perform very well. Although the reinforcement
learning approaches perform much better than in previous experiments, they are not
able to reach the performance of the Autonomous Motivation approach.

5.3.2.2 Dynamic Food Density

In the environment with dynamic food density, the world’s temperature is set to con-
stant 25 ◦C again. Starting with a rich environment, the food density abruptly switches
every six hours, either from rich to sparse or reverse. In fact, this is a dynamic combi-
nation of the static environments presented in section 5.3.1.

For each approach, 10 experiments are carried out for 36 hours of simulated time.
This duration features both the rich and the sparse environment three times. From the
results in the other scenarios, it can be expected that the motivation-based approach
performs best again.

Figure 5.13 illustrates the performance of each approach. At first glance, it may
surprise that the boxplots of all reinforcement learning methods using an ε-greedy
policy are smaller than in the static rich environment (cf. figure 5.5). This seems to
be caused by the short duration of the first, rich phase, which basically determines the
final outcome. As a result the outcomes cannot differ very much.

Nearly all ε-greedy swarms failed at the second phase and did not get out of the
following temperature trap. From those swarms, only some that followed Autonomous
Kernel Sarsa (aKS) could profit from later rich phases because they managed to hold
the temperature throughout the second phase. Nevertheless, as soon as the temperature
gets too high, all ε-greedy swarms fail to get back into the well tempered area.
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Figure 5.13: Boxplot of the nest’s final energy balance for each approach in the dynamic
food density environment.

As in the static rich environment, the reinforcement learning approaches generally
perform better when the softmax action selection policy is used. The only exception
from this rule seems to be softmax-variant of Autonomous Discrete Sarsa (aDSs) but
it is possible that this approach will get better if it has more time to adapt.

Exemplarily for a reinforced method, figure 5.14 shows the progress of the nest’s
energy balance and the nest’s temperature for each swarm that used Heteronomous
Kernel Sarsa with the softmax policy (hKSs). Although this approach seems to be
relatively successful because it is able to profit from multiple rich phases, failures can
always occur. For example: run number (1) successfully maintains the nest’s temper-
ature for four phases. Although phase five, the next to last one, is a rich phase, the
swarm abruptly fails. This may be caused by an abrupt change of rewards at phase
entry. Easily, high rewards that result from a former CommandForage can misleadingly
be related to a recent CommandHeatUp, which – in return – will be selected more often
and quickly push the swarm out of the well tempered area.

Conclusion. Within 36 hours of simulation in the dynamic food density environ-
ment, the Autonomous Motivation approach is, as expected, the best suited approach.
Interestingly, the hybrid approach, which – on average – takes the second rank, seems
to be less robust than in the static scenarios: its performance fluctuates much more.
The reinforcement learning approaches have the same difficulties as in the static sce-
narios: swarms using the ε-greedy policy easily get stuck in temperature states where
no food can be assimilated. As in the static rich scenario, the softmax policy helps to
leave these trap states. Only Autonomous Discrete Sarsa does not seem to profit in the
given time.
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Figure 5.14: Balance and temperature courses for each swarm that uses Heteronomous
Kernel Sarsa with softmax policy (hKSs) in the dynamic food density environment.
The x-axis is measured in hours of simulated time. The vertical dotted lines mark
the points of time where the food density changes.
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Means of the nest’s final energy balance (in kJ)

Approach Static Rich Static Sparse
Dynamic Tem-
perature

Dynamic Food
Density

hR -88.47 (11) -93.35 (11) 100.64 (11) -136.00 (11)
hDS 380.69 (7) -21.98 (3) 1294.15 (3) 138.53 (6)
hDSs 643.21 (3) -26.94 (5) 1206.20 (6) 434.26 (3)
hKS 450.03 (6) -23.70 (4) 1246.43 (4) 36.14 (10)
hKSs 599.11 (4) -31.82 (6) 1192.31 (9) 381.90 (4)
aR -110.19 (12) -101.76 (12) 94.73 (12) -157.18 (12)
aM 901.09 (1) 8.69 (1) 1360.15 (1) 682.52 (1)
aDS 333.06 (8) -41.41 (7) 1240.92 (5) 106.97 (8)
aDSs 303.03 (9) -53.99 (9) 1071.27 (10) 39.09 (9)
aKS 208.84 (10) -42.59 (8) 1198.59 (8) 118.35 (7)
aKSs 562.72 (5) -57.42 (10) 1202.22 (7) 275.30 (5)
hyb 849.38 (2) -1.64 (2) 1340.87 (2) 477.84 (2)

Table 5.5: Ranking of all approaches with respect to the scenario. The ranking is based
upon the means of the nest’s final energy balance.

5.3.3 Discussion

Table 5.5 gives an overview of the performance of all approaches with respect to the
given scenario, measured by the mean of the nest’s final energy balance. The number
in brackets shows the rank of the approach within each environment.

In all scenarios, the random approaches performed worse. Noticeably, the het-
eronomous one performed a little better. This observation can be explained: if a lead-
ing entity commands a task, potentially all five robots are inside the nest and execute
the given task concurrently. As a result, the effect of CoolDown and HeatUp is much
higher which raises the probability to maintain the nest’s temperature by accident.

The other end of the spectrum can also be identified easily: Autonomous Motivation
gains the gold medal and the hybrid approach gains silver. It can be said that the simple
technique of motivation-based control is perfectly suited for the given scenarios although
the underlying mechanism is very simple. On the downside, this approach will always
maintain the nest’s temperature, even if the swarm has no chance to reach the well
tempered area or if there is no food at all that would justify the effort. Nevertheless,
it is the best choice if such scenarios do not occur, as in the experiments.

Of course, the motivation-based approach is not optimal because the nest’s tem-
perature is maintained more than it needs to be, especially in the sparse environment.
Optimization can be achieved by lowering the motivations for HeatUp and CoolDown.
Also note that the performance of the approach is expected to depend on the swarm’s
size. For instance: if 1000 robots start cooling with a probability of 1 %, an average of
10 robots will start cooling at the same time. This effect could, of course, be countered
by a cooling task that automatically stops at the desired temperature state.

In summary, motivation-based control is a simple and effective mechanism to solve
Task Allocation in the given foraging mission. Nevertheless, the approach has to be
adapted properly to the expected environmental conditions and to the swarm’s size
that may be deployed.
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All remaining approaches are based on the reinforcement learning method of Sarsa(λ).
Each one is defined by three features:

1. Control type: either heteronomous (h) or autonomous (a)

2. State representation: either discrete (DS = discrete Sarsa) or continuous (KS =
kernel Sarsa)

3. Policy: either ε-greedy (original version) or softmax action selection (s)

Based on the outcome of experiments, the heteronomous control type seems to
work better than its autonomous counterpart. This may result from the fact that the
leader potentially commands five robots at the same time which raises the reward of
each action. On the downside, the chance of leaving the well tempered state is much
higher because the impact of CommandHeatUp and CommandCoolDown is greater than
if autonomous decisions are taken, at least on average. Note that this result is only
applicable for the given time of experimentation. The autonomous variants seem to
learn slower but may potentially outperform their heteronomous counterparts in longer
simulations.

The discrimination of discrete and kernel Sarsa is already harder. Generally, the
discrete approach performs better. One exceptional case is aKSs, which clearly out-
performs aDSs in all scenarios except the static sparse one. Again, this observation
may result from the given time of experimentation. Longer simulations with a greater
number of experiments would be needed to draw satisfying conclusions.

As discussed in the static rich environment, the selection of an appropriate policy
is very important. In the given scenarios, the ε-greedy policy tends to get stuck in
unpleasant temperature states where no food can be assimilated. As a result, these
approaches learn that resting is the only reasonable action. In contrast, the softmax
action selection policy is able to leave the trap states because it allows to discriminate
the usefulness of non-greedy actions with respect to the learned Q-values.

In summary, the Heteronomous Discrete Sarsa approach with softmax policy (hDSs)
seems to be the best choice from the reinforcement learning approaches. Noticeably,
the Autonomous Kernel Sarsa method with softmax policy (aKSs) does also perform
very well in the static rich and the dynamic food density environment. In general, au-
tonomous approaches perform worse but they may not have enfolded their full potential
in the given time.

The hybrid approach was included for proof of concept. It seems to profit very
much from the robots that are driven by motivations. On the other side, the inclusion
of robots controlled by Heteronomous Kernel Sarsa seems to handicap the approach,
especially in the dynamic food density scenario. This may just result form the fact that
reinforcement learning forces to choose non-greedy actions once in a time.

In summary, the experiments that were carried out advise to simply use the pure
motivation-based approach. It is easy to implement, performs very well and is robust
in both static and dynamic scenarios, at least as long as the amount of available food
justifies the effort of maintaining the nest’s temperature.
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5.4 Summary

This chapter presented experiments in a foraging scenario that is complicated by the
need to maintain the nest’s temperature at a specific level. Robots have to choose
between the tasks Forage, HeatUp, CoolDown and Rest.

First, the scenery was described. This included the definition of the world’s compo-
nents: a nest, which converts food to energy as long as it is well tempered, food areas,
which produce food at a specified rate, and robots, which consume energy in order to
collect food and in order to maintain the nest’s temperature. The aerial temperature
of the world influences the temperatures of both the nest and the robots.

Second, approaches to solve the given Task Allocation problem were sketched, fol-
lowing the taxonomy presented in chapter 3. Because the robots’ communication is
limited to the local broadcast of a light signal, all mechanisms that rely on complex
communication protocols were excluded from further consideration. Additionally, a
focus was put on reinforcement learning methods and simple adaptive approaches.

Finally, discrete and continuous variants of both centralized and decentralized re-
inforced control were tested in static and dynamic scenarios. Additionally, a simple
motivation-based approach and a hybrid approach using side-by-side control have been
simulated.

All methods proved to be better than random allocation but only the motivation-
based approach could manage a positive energy balance in both rich and sparse scenar-
ios. This motivation-based method turned out to be the overall winner in the tested
scenarios: it is simple, robust and performs best.

Reinforced control was also able to perform well. Unfortunately, the performance of
the tested methods varied very much. It is expected that all variants could be improved
by redefinition of some parameters and elements, e.g. the reward function. In many
cases, the learning methods even had the problem of running into a kind of “dead end”
where exploration did not suffice to learn better action selection.

This thesis advises to carefully analyze the mission and its environmental conditions
before choosing a concrete approach to solve Task Allocation. The experiments showed
that reinforcement learning has great potential but needs to be adapted well. In clear
missions like the present one, it is easier to implement adaptation rules for a motivation-
based approach than to construct a reward function that successfully drives the learning
process.



Chapter 6

Conclusion and Outlook

This thesis engaged mechanisms for Task Allocation in Swarm Robotics in theory and
practice. In its theoretical part, the background of the corresponding research field has
been enlightened and an overview of approaches to Task Allocation has been given. In
its practical part, the thesis used the Swarmulator – a simulation platform that was
developed within the scope of this work – to experiment with different mechanisms in
a concrete foraging scenario.

The presented overview should help designers of swarm robotic systems to find
mechanisms that are appropriate for their needs. In order to clearly arrange differ-
ent approaches, a new taxonomy was proposed which discriminates mechanisms into
Heteronomous, Autonomous and Hybrid Task Allocation.

In the experimental part of this work, a focus was set on centralized and decentral-
ized reinforced control. Additionally, a simpler adaptive probabilistic approach based
on motivations was simulated. In the tested static and dynamic environments, this
motivation-based method outperformed all reinforcement learning approaches because
it was much easier to define adequate adaptation rules for motivations than to construct
a reward function that harmonizes with the learning method and its parameters. Nev-
ertheless, the motivation-based approach just performed better because it was tailored
to the concrete scenarios. Under other environmental conditions the motivation-based
approach would break down and be outperformed by reinforcement learning.

Swarm Robotics is still a young research field and in continuous development. Task
Allocation is a very important problem that has to be faced by designers of robotic
swarms. Recent research shows that there is still much work to do and the investigation
of Task Allocation in Swarm Robotics is far from finished. Shiroma and Campos [SC09],
for example, investigate the potential of robots that follow multiple tasks concurrently
instead of being restricted to one task at a time. Another direction of research examines
self-organized task partitioning [PBF+11]. These are first steps towards autonomous
robotic swarms that do not only efficiently tackle Task Allocation but also decompose
the global mission into tasks and subtasks on their own.

It would be interesting to simulate these new approaches in the Swarmulator. Due
to its modular design, this tool is applicable for a wide range of scenarios and can easily
be adapted to new ones, as demonstrated by Gutschale [Gut12] who investigates Multi
Robot Task Allocation with respect to triggered events, like robot failure. Further
extension, for example by the feature to load and save ongoing experiments, will make
the Swarmulator an even more powerful tool that supports research in the field of
Swarm Robotics and beyond.
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nenat, Nithin Mathews, Marco Montes de Oca, Rehan O’Grady, Carlo
Pinciroli, Giovanni Pini, Philippe Rétornaz, James Roberts, Valerio
Sperati, Timothy Stirling, Alessandro Stranieri, Thomas Stützle, Vito
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