
Institut für Informatik
Lehrstuhl für Programmierung und Softwaretechnik

LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor Thesis

An Extended Simulator for

Motivation-Based and Fault Tolerant

Task Allocation in Multi-Robot Systems

Robert Gutschale

Aufgabensteller: Prof. Dr. Martin Wirsing
Betreuer: Annabelle Klarl, Christian Kroiß
Abgabetermin: 29. März 2012

ii

Ich versichere hiermit eidesstattlich, dass ich die vorliegende Arbeit selbstständig
angefertigt, alle Zitate als solche kenntlich gemacht sowie alle benutzten Quellen
und Hilfsmittel angegeben habe.

München, den 29. März 2012
. .

(Unterschrift des Kandidaten)

iv

Zusammenfassung

Die Simulation von Systemen mit mehreren Robotern spielt in der Entwick-
lung eine sehr wichtige Rolle. Einerseits kann die Simulation Geld einsparen,
da reale Roboter sehr wertvoll sind und ihre Wartung und Reparatur hohe
Kosten verursachen. Andererseits sind Experimente mit realen Robotern
sehr zeitaufwändig, da in der Regel nur ein Experiment gleichzeitig durch-
geführt werden kann und es auch keine Möglichkeit gibt, den Verlauf des
Experiments zu beschleunigen. Ein Ausfall von einem Roboter führt hier
unweigerlich zu einer Verzögerung des Experiments.

Auch ist es normalerweise nicht einfach, dynamische Umgebungen und kon-
trollierte Fehler zu erzeugen, wie zum Beispiel fehlerhafte Sensoren oder
Aktuatoren der Roboter. Selbst wenn eine einfache Lösung zu diesen Prob-
lemen gefunden wird, ist es oft aufwändig, eine Reihe von Experimenten mit
den exakt gleichen Umgebungsänderungen oder Fehlern an den Robotern
durchzuführen. Häufig ist es erwünscht, ein Experimente mit identischen
Gegebenheiten zu wiederholen, um beispielsweise unterschiedliche Zusam-
mensetzungen des Roboterteams zu testen und untereinander zu vergle-
ichen.

Diese Arbeit präsentiert einen Simulator, der es ermöglicht Simulationen
mit (möglicherweise automatisierten) Umgebungsänderungen oder fehler-
haften Robotern durchzuführen. Als Grundlage wurde der von Martin
Burger entwickelte Swarmulator [Bur12] genutzt, auf dem der Großteil der
internen Logik dieses Simulators basiert. Die Funktionalität des Simulators
wurde erweitert, um Experimente mit den eben erwähnten Änderungen oder
Fehlern durchführen zu können. Um die Aktionen des Roboterteams zu
koordinieren, wurde weiterhin die von Parker entwickelte ALLIANCE Ar-
chitektur [Par98] implementiert. Zusätzlich wertet diese Arbeit Resultate
verschiedener Experimente aus, die anhand einer Fallstudie durchgeführt
wurden. Diese Fallstudie basiert auf Experimenten, die von Parker [Par98]
mit reellen Robotern durchgeführt wurden.

v

vi

Abstract

In the development of multi-robot systems, simulation plays a crucial role.
On the one hand, simulation can save money, because physical robots are
very valuable and damage to them results into high maintenance costs. On
the other hand, experiments with physical robots are very time consuming,
since usually only one experiment at a time is conducted and there is no
possibility to fast forward when there is no interesting robot behavior at the
moment. Here, damage to the robots results into a delay of the experiment.

Furthermore, it usually isn’t easy to create dynamic environments and con-
trolled failures such as faulty sensors or actuators within the robots. Even
if a trivial solution to these problems is found, it’s very laborious to conduct
a number of experiments with the exact same changes in the environment
and/or failures. It is often desired to repeat an experiment with identical
conditions, for example to test different compositions of robot teams and
compare their performance under those conditions.

This thesis presents a simulator that makes it possible to conduct simula-
tion runs with (possibly automated) changes in the environment or failures
within the robots. As a basis, the Swarmulator, a simulator for swarm
robotics, which was developed by Martin Burger within the scope of his
diploma thesis [Bur12] is used and contributed the main part of the in-
ternal logic of the simulator. However, it needed to be extended to design
experiments with the aforementioned environmental changes or robotic fail-
ures. The ALLIANCE architecture, as introduced by Parker in [Par98] is
implemented as the mechanism for the coordination of a team of robots.
Additionally, this thesis also discusses the experimental results of a case
study, which has been adopted from Parker [Par98].

vii

viii

Acknowledgements

I would like to thank Prof. Dr. Martin Wirsing for giving me the opportunity to write
this bachelor thesis, which has introduced me to a very interesting field of research.

I would especially like to thank the supervisors of my thesis, Annabelle Klarl and
Christian Kroiß, for their commendable support. Their continuous feedback in our
meetings and through various emails helped me to a great extend to always improve
the quality of my thesis.

Additionally I would like to thank Martin Burger for developing the Swarmulator,
which I partly used as a basis for my work, as well as for supporting me whenever I
had questions or problems with it.

ix

x

Contents

1 Introduction 1

1.1 Objective . 1

1.2 Outline . 2

2 Foundations 3

2.1 Concepts . 3

2.1.1 Intelligent Agents and Robots . 3

2.1.2 Environment . 4

2.1.3 Mission . 4

2.1.4 Task . 4

2.1.5 Multi Robot Task Allocation . 5

2.2 ALLIANCE Architecture . 5

2.2.1 Overview . 5

2.2.2 Task Selection . 6

2.3 Summary . 9

3 ALLIANCE Simulator 11

3.1 Module Overview of the Simulator . 11

3.2 Module swarmulatorCore . 11

3.2.1 Overview of the Swarmulator . 12

3.2.2 Extending the Swarmulator . 14

3.2.2.1 Obstacle . 14

3.2.2.2 Interruption Handler Mechanism 14

3.3 Module allianceCore . 15

3.3.1 BehaviorSet . 15

3.3.2 MotivationalBehavior . 16

3.3.3 Robot . 17

3.3.4 Communication . 17

3.4 Module allianceWasteMission . 18

3.4.1 Requirements . 18

3.4.2 Implementation . 19

3.5 Summary . 19

4 Case Study 21

4.1 Waste Cleanup Mission . 21

4.1.1 The Environment . 21

4.1.1.1 The World and its Components 22

4.1.1.2 The Robots . 23

4.1.2 The Mission . 23

xi

xii CONTENTS

4.1.2.1 find-locations . 24
4.1.2.2 move-spill . 26
4.1.2.3 report-progress . 26

4.2 Case-specific Implementations . 26
4.2.1 Obstacles and Obstacle Avoidance 27
4.2.2 Interruption Handler . 28
4.2.3 Communication . 28

4.3 Experiments . 29
4.3.1 No Interruption . 30
4.3.2 Trapping one Robot . 31

4.4 Evaluation of the Extended Simulator 33
4.5 Summary . 34

5 Conclusion 35

List of Figures 37

Content of the CD 39

Bibliography 41

Chapter 1

Introduction

Since the establishment of artificial intelligence in the middle of the 20th century, a vast
variety of robotic systems have been researched, designed and actually built. Nowadays,
nearly every aspect of our life can be aided by some kind of robot. While the usage
of robots in the private life is yet mostly marginal, the industrial and military sectors
greatly use robotic systems for various applications. In a lot of cases, robots are either
used because of the degree of danger or the highly repetitive nature of the application
and therefore to reduce the need for human workers.

Generally, there are two approaches when designing a robotic solution for an ap-
plication. On the one hand, a single robot could be used, that has all the capabilities
to perform the desired tasks. On the other hand, a team of multiple robots may be
used, where each robot has limited capabilities. Furthermore, the robotic team may be
designed redundantly in their skills, to address the issues of uncertainty and failures
within the robots’ sensors and actuators. Obviously, if only one robot is used and
that robot fails, it would have disastrous consequences. On the contrary, a team of
robots may be able to compensate the failure of a team member to some degree to still
satisfactory achieve its purpose.

One of the key issues which has to be addressed in the design of multi-robot systems
is the coordination of the robotic team. Each robot needs to know when it has to execute
which task. This problem is commonly referred to as multi robot task allocation. At
some point, this mapping of robots to tasks has to be determined and ideally it should
optimize the performance of the robotic team, considering some criteria such as time-
or cost-efficiency.

1.1 Objective

Since real-world experiments are usually cost- as well as time-extensive, simulation
plays a crucial role in the development of multi-robot systems. The goal of this thesis
is to develop a simulator that uses the so called ALLIANCE architecture, developed
by Parker [Par98], for task allocation. ALLIANCE is a fully distributed and behavior-
based approach, that uses mathematically modeled motivations for task allocation. Due
to its design, it allows the robots to effectively and efficiently respond to unexpected
environmental changes or to failures within the robots, such as faulty sensors or the
complete malfunction of a team member.

Since Martin Burger just finished the main work on the Swarmulator, a simulator
for swarm robotics, which he developed within the scope of his diploma thesis [Bur12],
this simulator is used as a basis. As it is of high interest to observe how the robotic

1

2 CHAPTER 1. INTRODUCTION

team responds to changes and failures, the simulator is extended to interrupt simulation
runs during the runtime in order to create these changes or failures.

1.2 Outline

Chapter 2 establishes the necessary foundations for this thesis. First, some basic con-
cepts of the field of multi-robot systems are introduced, followed by a presentation of
the ALLIANCE architecture.

The next two chapters completely describe the developed simulator. Chapter 3
presents a general overview, while also giving a description of the underlying framework
of the simulator, which is based on the Swarmulator by Martin Burger [Bur12] and the
implementation of the ALLIANCE architecture. It also details the aforementioned
extensions to the Swarmulator.

Chapter 4 contains the implementation of a case study. After presenting the sce-
nario, which is adopted from an experiment conducted by Parker [Par98] and some
case-specific implementations, it also discusses some experiments and their results.
Based on those, an evaluation of both the simulator and the case study is given.

Finally, chapter 5 briefly summarizes this thesis and suggests future work on the
simulator.

Chapter 2

Foundations

For a thorough understanding of the ALLIANCE architecture, its implementation in
this thesis and its general context in artificial intelligence, it is important to take a
deeper look at some concepts in the field of multi-agent/multi-robot systems. This
chapter first introduces all concepts that are used later on and secondly gives a brief,
but sufficiently detailed insight into ALLIANCE.

2.1 Concepts

In order to introduce the concepts, this section begins with an explanation of intelligent
agents, followed by a specification of the environments agents typically live in, both
based on chapter 2 of Artificial Intelligence: A Modern Approach [SR10]. Next, the
mission and subsequently the agents’ tasks are defined, corresponding with their usage
in ALLIANCE: An Architecture for Fault Tolerant Multi-Robot Cooperation [Par98].
Lastly, a short description of task allocation is given.

2.1.1 Intelligent Agents and Robots

Russell and Norvig [SR10] define an intelligent agent as “anything that can be viewed as
perceiving its environment through sensors and acting upon that environment through
actuators.” They also state some examples: A human agent uses eyes, ears and other
organs as sensors and hands, feet, mouth and other bodily parts as actuators. A robotic
agent could use cameras and infrared range finders as sensors and could act using various
motors, while a software agent may use keystrokes, file content and network packets
as sensory input and may act by displaying something on a screen, writing files or
transmitting network packets.

Furthermore, Russell and Norvig introduce two concepts to specify an agent’s choice
of action at any given moment: An agent’s behavior is described by its agent function,
which maps any sequence of sensory input to an action. An implementation of this
mathematical function is called agent program.

To answer the question whether or not an agent ‘does the right thing’, Russell and
Norvig are using performance measures. A sequence of actions by an agent causes its
environment to go through a sequence of states. If this sequence of states is desirable,
the agent performs well and therefore ‘does the right thing’.

Since the focus of this thesis lies in the simulation of robots and multi-robot systems,
the following terms should also be defined: A robot is an embodied agent that is placed

3

4 CHAPTER 2. FOUNDATIONS

in a real-world (i.e. physical) environment. Analogical, a multi-robot system is a multi-
agent system that uses exclusively robots as intelligent agents. As the name implies,
a multi-agent system is a composition of multiple agents that interact to achieve a
pre-defined goal.

2.1.2 Environment

As one can easily imagine, the range of environments agents perceive and act on is
very diverse. For a scientific categorisation of environments, Russell and Norvig [SR10]
identified a small number of characteristics. In the following, those characteristics that
are most relevant to this thesis are introduced.

If an agent can perceive every aspect of the environment that is relevant to the
action selection, the environment is called fully observable. Otherwise, it is called
partially observable. Fully observability is convenient, because the agent neither has to
explore the world, nor does it need to maintain an internal state to keep track of it.

The second characteristic concerns the number of agents that interactively live in
the environment. If there is only one agent, the environment is called single agent, while
it is called multiagent when there are multiple agents. An object is treated as an agent
if its “behavior is best described as maximizing a performance measure whose value
depends on [another agent’s] behavior” [SR10, p. 43]. Multiagent environments can
further be characterized as cooperative, where agents try to maximize the performance
measure of all agents, or competitive, where agents try to maximize only their own
performance measure while possibly minimizing those of other agents.

Environments can be sequential or episodic. If an agent’s action influences its
future decisions, the environment is sequential. In an episodic environment, the agents
actions can be broken down into episodes, consisting of some sensory input and one
action, where the action selection does not depend on previous decisions.

It could occur that the environment changes while the agent is deciding on an action.
If that is the case, the environment is dynamic. On the other hand, an environment is
static, if it only changes when an agent performs an action.

2.1.3 Mission

To intelligently determine which actions to choose, an agent needs some kind of goal to
achieve. In cooperative multi-robot systems, this goal is represented by a mission the
robots have to fulfill as a team. This mission is a composition of an arbitrary number
of loosely coupled tasks that may have ordering dependencies. An example of coupled
tasks can be found in section 4.1.2, where one task can only be processed after it has
received input from another task.

2.1.4 Task

While traditional task allocation defines a task as “a subgoal that is necessary for
achieving the overall goal of the system, and that can be achieved independently of
other subgoals (i.e. tasks)” [BPG04, p. 1], in the context of ALLIANCE, it is sufficient
to allow tasks to be loosely coupled and to have ordering dependencies. Therefore a
task may be informally described as a sequence of actions (such as move to location
(x, y), then pick up object o), performed by one or more robots. This slightly more
lenient definition is sufficient, because the approach of the ALLIANCE architecture

2.2. ALLIANCE ARCHITECTURE 5

(see sections 2.2.1 and 2.2.2) differs from traditional task allocation [Par98, p. 5–6], as
it is described in section 2.1.5.

A differentiation between high-level tasks and low-level tasks/competences (also re-
ferred to as lower-level robot control and similar synonyms), can be found in various
literature, such as [Par98], [BPG04], or [CHF04]. A high-level task is part of a mission,
for example a task locate food in a foraging mission, whereas a low-level task describes
some basic behavior that should often be constantly performed (e.g. obstacle avoid-
ance). It is possible that a robot performs several low-level tasks at the same time.
High-level tasks on the contrary, are usually performed sequentially by one robot, or
simultaneously by multiple robots, where one robot can only perform one task at a
time.

2.1.5 Multi Robot Task Allocation

With the concepts introduced above, it is possible to design a single agent environment
and multiple tasks in order to assign a mission to that agent. However, there is one
additional problem in multiagent environments, as the agents (in this case robots) need
to decide “which robot should execute which task” [BPG03, p. 1], in order to properly
cooperate and thereby to achieve a good performance. This issue is commonly referred
to as multi robot task allocation.

Depending on the multi-robot system, different criteria may be used to assess the
performance of the robotic team. Amongst those criteria are the minimization of the
energy consumption of the robots or the time it takes the robots to accomplish the
mission. Just as well, the performance of the team may be evaluated by considering
the number of tasks each robot performs in a given time period. Often, a combination
of multiple criteria have to be respected when designing a multi-robot system.

In order to find a suitable mapping of robots to tasks, the mission is usually decom-
posed into subtasks, hierarchical task trees, or roles. Traditionally, a central planner, or
simply the designer then computes the robot to task mapping, based upon the robots’
capabilities and the specified performance criteria. However, this approach often offers
too little possibilities for re-allocation of the tasks, for example when robot failures
occur.

2.2 ALLIANCE Architecture

Now that the necessary background for ALLIANCE is defined, a brief description of its
architecture can be presented. The definition of multi robot task allocation in section
2.1.5 already mentioned the problem of re-allocation. In real-world applications, the
design of a multi-robot system has to account for issues such as robot failures or a dy-
namic environment. The ALLIANCE architecture was developed with especially these
problems in mind, as it allows the robots to respond robustly and reliable to failures
at any time during a mission, for example within the robots or the communication and
to adapt to a dynamic environment, changes in the team’s mission or the composition
of the robotic team, as stated by Parker [Par98, p. 2].

The following sections first give a general overview and then present a more detailed
look at the method of task allocation, the formal model of ALLIANCE.

6 CHAPTER 2. FOUNDATIONS

2.2.1 Overview

ALLIANCE is a fully distributed, behavior-based architecture for fault tolerant multi-
robot cooperation. It uses two mathematically-modeled motivations – impatience and
acquiescence – for task selection. The design focus was to create robot teams, that can
operate successfully amidst uncertainties and failures concerning the robots’ sensors
and actuators, the action selection and execution, or amidst a dynamic environment,
to just name a few examples. Since every robot is capable to determine its own actions,
there is no need for a centralized control mechanism.

Every robot possesses several behavior sets, each corresponding to a high-level task
achieving function. A behavior set can either be active or hibernating, but due to
conflicting goals, only one behavior set can be active at a given time in one robot.
Therefore, when one behavior set gets activated, it inhibits all other behavior sets
within that robot from activation. But as described in section 2.1.4, the robot could
continually perform a number of low-level tasks such as collision avoidance. For every
behavior set, there is also a motivational behavior, controlling the activation of its
assigned behavior set. Figure 2.1 illustrates this basic architecture.

ALLIANCE uses a fairly simple form of inter-robot communication, each robot in-
forms the other robots only of its currently active behavior set via a broadcast message.
Gerkey and Matarić [BPG03] described this as a “heartbeat message”, broadcasted by
each engaged robot. Hence, no two-way communications are needed and the commu-
nication overhead gets reduced.

At any given time, every high-level task the robot can perform at that moment
is considered for (re)assignment. This means every motivational behavior is assess-
ing a motivation for its behavior set, based on the current levels of impatience and
acquiescence, while also considering the sensory feedback, inter-robot communication
and cross-inhibition from other active behavior sets. If this motivation exceeds a given
threshold, the according behavior set gets activated. For example, the motivation to
execute a task that is currently performed by a teammate increases over time by the
robot’s own impatience and by the teammate’s acquiescence. In the same way, the
desire of a robot to furthermore execute a task decreases by its acquiescence and the
impatience of its teammates.

This approach differs from traditional task allocation (as described in section 2.1.5),
as the motivations are designed to allow robots to perform a task as long as their task
execution shows the desired effect on the environment.

2.2.2 Task Selection

As mentioned in the previous section, the task selection occurs in the motivational be-
havior, based on a number of sources. This section, which is based on chapter III. D. of
ALLIANCE: An Architecture for Fault Tolerant Multi-Robot Cooperation [Par98], now
specifies these sources and defines a number of functions and parameters that are used
to calculate the motivation to activate a behavior set. For this, Parker [Par98] defined
the following problem: The set R = {r1, r2, . . . , rn} represents the robot team, con-
sisting of n heterogeneous robots performing the tasks T = {task1, task2, . . . , taskm},
which compose the mission. The behavior sets robot ri possesses are represented by
the set Ai = {ai1, ai2, . . .}. As one task could be performed differently by different
robots, it is also necessary to have a way of referring to the task a robot is currently
executing via its activated behavior set. The set {h1(a1k), h2(a2k), . . . , hn(ank)} is a set
of functions, where hi(aik) returns the task that behavior set aik is accomplishing.

2.2. ALLIANCE ARCHITECTURE 7

Figure 2.1: The ALLIANCE architecture, as it is implemented on every member in
the robot team. Each motivational behavior manages one behavior set, based on
sensory and communicational input and on cross-inhibition when another behavior
set is active. (taken from [Par98, p. 6])

In the following, a number of parameters and functions are presented, which were
all defined by Parker in [Par98].

The first parameter to be set is θ, the threshold of activation. If the motivation
reaches or exceeds this threshold, the corresponding behavior set will become active.
Only one global threshold is needed, because the rates of impatience and acquiescence
can vary across behavior sets and robots.

As seen in figure 2.1, the motivational behavior needs some input concerning the
sensory feedback, the inter-robot communication and the cross-inhibition between be-
havior sets. ALLIANCE defines the following functions to adress this issue:

sensory feedbackij(t) =


1 if the sensory feedback in robot ri at

time t indicates that behavior set aij is
applicable

0 otherwise

(2.1)

comm received(i, k, j, t1, t2) =


1 if robot ri has received message from

robot rk concerning task hi(aij) in the
time span (t1, t2), where t1 < t2

0 otherwise

(2.2)

activity suppressionij(t) =

0 if another behavior set aik is active, k 6=
j, on robot ri at time t

1 otherwise

(2.3)

8 CHAPTER 2. FOUNDATIONS

With function (2.1), the motivational behavior receives the necessary sensory feed-
back to determine whether its behavior set is applicable at a given time or not. Function
(2.2) is utilized to monitor the communication messages, specifically to note when a
teammate is executing task hi(aij). Additionally, the parameters ρi and τi are applied
for inter-robot communication. ρi specifies the broadcast rate, while τi gives the time
after which ri decides a specific team member has ceased to function, provided that ri
didn’t receive any broadcasts from that robot in the time span τi. The cross-inhibition
is achieved by the use of function (2.3). Whenever there is another active behavior set
in the robot, this function returns 0.

To compute the current rate of impatience, ALLIANCE defines three parameters.
δ fastij(k, t) and δ slowij(k, t) are the rates of impatience when no other robot is
currently performing the task hi(aij), respectively when one ore more team members
execute the task of behavior set aij . Robot ri may have different parameters δ slowij

for each teammate rk. Likewise, ri has a number of parameters φij(k, t), which assign
the time the robot is willing to let its motivation for behavior set aij be affected by
communication messages from robot rk concerning task hi(aij). Two functions are
defined, first (2.4), to compute the current rate of motivation, second (2.5) to reset the
robots motivation of behavior set aij when he receives the first communication message
from team member rk concerning task hi(aij):

impatienceij(t) =
mink(δ slowij(k, t)) if (comm received(i, k, j, t− τi, t) =

1) and (comm received(i, k, j, 0, t−
φij(k, t)) = 1)

δ fastij(t) otherwise

(2.4)

impatience resetij(t) =0 ∃k.((comm received(i, k, j, t − δt, t) = 1) and
(comm received(i, k, j, 0, t− δt) = 0))

1 otherwise
(2.5)

As a robot shouldn’t execute a task forever, there are two parameters, ψij(t) and
λij(t), and one function, (2.6), to determine when the robot decides to acquiesce it.
When a team member wants to take over task hi(aij), robot ri doesn’t yield instantly,
but rather continues the task execution for a period of time, given by ψij(t). Since a
robot may perform a task he is not best suited for, there is a maximum period of time,
given by λij(t), ri wants to maintain behavior set aij active before giving up on the
task, to possibly execute a task he is better suited for.

acquiesenceij(t) =

0 if ((behavior set aij of robot ri has been active
for more than ψij(t) time units at time t) and
(∃x.comm received(i, x, j, t − τi, t) = 1)) or (be-
havior set aij of robot ri has been active for more
than λij(t) time units at time t)

1 otherwise

(2.6)

2.3. SUMMARY 9

The functions defined above are now used to calculate the motivation of activation
in function (2.7) of behavior set aij in robot ri. The motivation initially is set to 0
and increases over time by some rate of impatience, given by function (2.4). It gets
reset in turn to 0, when any one of the following events occur: The sensory feedback
in function (2.1) indicates aij isn’t applicable, ri has activated another behavior set
and therefore gets inhibited by function (2.3) to activate aij , the impatience needs to
be reset as specified by function (2.5), or the robot decides to acquiesce the task in
function (2.6).

mij(0) = 0

mij(t) = [mij(t− 1) + impatienceij(t)]

∗ sensory feedbackij(t)
∗ activity suppressionij(t)
∗ impatience resetij(t)
∗ acquiescenceij(t)

(2.7)

2.3 Summary

This chapter presented the basic foundations that are needed for this thesis. First,
some of the concepts from the field of multi-robot systems were introduced, followed
by an insight into the ALLIANCE architecture.

The first two concepts intelligent agent and environment were defined by using the
definitions of Russell and Norvig [SR10]. A robot was described as an embodied intel-
ligent agent, which in turn can be seen as anything that interacts with its environment
by using sensors and actuators. Also, several characteristics for the categorization of
environments were presented, such as its degree of observability, or whether one or mul-
tiple agents live in it. As a team of robots needs a goal to achieve, the concept mission
was defined as a composition of tasks, that are performed by one or by multiple robots.
Furthermore, tasks were classified into high-level tasks that are performed to accom-
plish a mission and low-level tasks such as obstacle avoidance. The last concept, multi
robot task allocation was identified as a major problem in the design of multi-robot
systems, as it needs to be specified when which task is executed by which robot.

In the second part of this chapter, the ALLIANCE architecture was presented as
an motivation-based and fault tolerant approach to the problem of multi-robot task
allocation. The mathematically modelled motivations were described, as well as the
behavior sets and motivational behaviors, which specify how a single robot executes a
task and when to activate or hibernate a behavior set respectively.

These foundations are used in the next chapter to adapt and extend an existing
simulator for swarm robotics, so that experiments with the ALLIANCE architecture
can be simulated.

10 CHAPTER 2. FOUNDATIONS

Chapter 3

ALLIANCE Simulator

The main goal of this thesis was to implement the ALLIANCE architecture and to
develop a framework that allows the design of experiments which use ALLIANCE for
multi-robot task allocation. Since Martin Burger has just finished the main part of
the Swarmulator [Bur12], a simulator to test mechanisms for task allocation in swarm
robotics, this simulator is chosen as a foundation. To make experiments more realistic,
it is extended in two aspects, namely the addition of obstacles and therefore the need for
obstacle avoidance and the functionality to change the environment and create failures
such as faulty robotic sensors or actuators during a simulation. The following sections
first give a general overview of the modules which compose the simulator and then
provide a deeper insight into each module.

3.1 Module Overview of the Simulator

The simulator is divided into the three modules swarmulatorCore, allianceCore and
allianceWasteMission. This basic architecture is illustrated in figure 3.1. The mod-
ule swarmulatorCore provides all the basic functionalities of the Swarmulator and
therefore holds the internal logic of the simulator. The ALLIANCE architecture, as
described in section 2.2, is contained in module allianceCore. Finally, the module
allianceWasteMission contains an experiment, in this case a simulation of the labo-
ratory version of a hazardous waste cleanup, as conducted by Parker [Par98].

Because of this architecture, it is relatively easy to extend this simulator. Additional
experiments using ALLIANCE, can be either integrated into allianceWasteMission,
or into an additional module similar to allianceWasteMission if this is necessary. Fur-
thermore, it is possible to simulate experiments that don’t use the ALLIANCE archi-
tecture. In this case, two modules need to be added. One, analogous to allianceCore,
containing the basic framework that specifies the components of the world and de-
fines their interactions, such as task allocation. The other containing one ore multiple
experiments, analogous to allianceWasteMission.

3.2 Module swarmulatorCore

As mentioned earlier, the module swarmulatorCore contains the internal logic of the
simulator and provides basic classes to design environments. With the exception of a
few aspects that are presented in section 3.2.2, it is based completely on the Swarmu-
lator, which was developed by Martin Burger as a simulator for swarm robotics within

11

12 CHAPTER 3. ALLIANCE SIMULATOR

Figure 3.1: The basic architecture of the simulator. The module swarmulatorCore

provides the basic functionalities of the Swarmulator, while allianceCore and
allianceWasteMission include the ALLIANCE framework and an experiment re-
spectively.

the scope of his diploma thesis [Bur12]. Although ALLIANCE is not an architecture for
swarm type cooperation, but rather for “intentional” cooperation as Parker described
it [Par98, p. 2], the Swarmulator can easily be adapted for ALLIANCE experiments,
as it processes a stepwise computation of a virtual world for every simulation.

3.2.1 Overview of the Swarmulator

The Swarmulator provides the basic functionalities to simulate multiple experiments,
each featuring a virtual world and an arbitrary number of objects that may interact
with each other. It was developed to test mechanisms for task allocation in swarm
robotics. Each simulation modifies one virtual world an its components, while optional
csv-files can be produced that contain some statistical data. For this, the Swarmulator
uses a model-view-controller architecture, which is illustrated in a simplified version in
figure 3.2. The Swarmulator uses a factory to create a world, which is then associated
to a thread, that computes steps for the world. At any point in the simulation, a view
can be opened, which draws the current step of the simulated world.

The virtual world is represented in a class World. This class holds a reference to
the floor of the world and it manages two lists, one for the Components that live in
the world and one for the Aspects each Component may hold. These two classes are
explained later on. Additionally, a World knows how much time has passed since the
beginning of the simulation and every World also stores its pseudo random generator,
which is instantiated at the creation of a new simulation with a user specified random
seed. This random seed is also included in a separate file when csv-logging is enabled.
This makes it possible to deterministically repeat simulation runs.

3.2. MODULE SWARMULATORCORE 13

Figure 3.2: Simplified representation of the model-view-controller pattern used by the
Swarmulator. (Adapted from [Bur12])

The class Component serves a basic class for all objects that live in a World.
Components have a unique id and are associated to exactly one World, where they reside
at a specified position with a given orientation. Additionally, a Component manages a
set of Aspects, which may be used to simulate for example the energy consumption of
robots or the temperature of objects, if these points should be regarded in the exper-
iment. A Component provides methods to update its position and its orientation, but
in order to sense other Components, it needs a sensor. Hence, the Swarmulator also
provides basic classes for sensors.

A simulation step gets processed in the method computeStep(int millisGone)

of a World, where the parameter millisGone gives the time span of the step. First,
all steps for the World are computed. For example, in a dynamic environment, this
computation may create new obstacles. Then, all steps for the Components are pro-
cessed. This computation differs in complexity from simple objects that neither change
nor interact with other objects and therefore need no computation steps, to robots,
where complex mechanisms such as the ALLIANCE architecture need to be processed
to decide their actions. Finally, all steps for the Aspects are computed.

As illustrated by figure 3.2, a World gets created in a world factory, while its method
computeStep(int millisGone) gets called by a SimulationRun, which is an imple-
mentation of the Runnable interface. To execute a simulation run, the Swarmulator
starts a thread that computes the simulation steps via the run method.

It is possible to import world factories from jar-files that contain the other two
modules. This makes it easy for users to “distribute their experiment’s definition with-
out having to include the simulation platform itself” ([Bur12]). Such a jar-file has to
include a top-level file named “factories.cfg” that names the world factories it provides.
With this, the Swarmulator is capable to locate the corresponding classes and the user
can create new simulation runs with the imported world factories.

14 CHAPTER 3. ALLIANCE SIMULATOR

3.2.2 Extending the Swarmulator

To make experiments more realistic, the Swarmulator was extended in two aspects.
Obviously, the robots should be prohibited from moving through obstacles such as
walls. Additionally, there should be the possibility to intervene simulations, in order
to change the environment or to create failures, such as faulty sensors or actuators
within the robots. The second aspect is of particular interest for this thesis, because,
as described in section 2.2, the ALLIANCE architecture is especially designed to allow
the robots to respond to such environmental changes or robotic failures.

3.2.2.1 Obstacle

To incorporate obstacles and obstacle avoidance, two things have to be considered:
First, every object that should be treated as an obstacle needs some property that
allows other objects to identify it as such. Second, an object such as a robot needs a
way to identify other objects as obstacles.

The following solution has been implemented to fulfill these requirements: Every
Component now has a field called penetrability, which holds its degree of penetrabil-
ity, specified in the following manner:

• The penetrability is given as a positive float value.

• If the penetrability is in the interval [0.0, 0.1], the Component is interpreted as
completely impenetrable.

• If the degree of penetrability is greater than 0.1, but less than 1.0, the Component

is not impenetrable, but has a negative effect on the movement speed of the
penetrating object. This can be used in environments that have objects such as
water spills, or debris lying on the ground, which the robots can move over, but
will be slowed down.

• If the penetrability equals 1.0, other objects can move over or through it with no
effects on their movement speed. Usually the floor of a world is designed to have
no speed-altering effects on the robots.

• If the penetrability is greater than 1.0, the penetrating Component will experience
an accelerating effect on its movement speed.

A Component now also provides methods to indicate whether it is impenetrable and
whether it affects the movement speed of other objects moving over it in a positive
or negative way. This makes it possible to design sensors for robots, that not only
are capable to sense obstacles and therefore allow the robot to avoid collisions, but
also to sense objects that alter the robot’s movement speed in a positive or negative
way. With the latter characteristic, environments could be designed in which a robot
would deliberately utilize components that have an effect on its movement speed. For
example, a robot could search for routes that meet some criteria, such as finding the
route with the shortest traveling time between two points.

3.2.2.2 Interruption Handler Mechanism

Every world now holds a list of InterruptionHandlers, which can be added in a
factory. They are used to create and control changes to the environment or robotic

3.3. MODULE ALLIANCECORE 15

1 public interface InterruptionHandler {

2

3 public void triggerEvent(int millisGone);

4

5 public void setWorld(World world);

6 }

Figure 3.3: Code-excerpt of the InterruptionHandler interface.

failures. An InterruptionHandler is an interface, which contains two methods, as
illustrated in figure 3.3.

One method, public void triggerEvent(int millisGone), gets called in every
simulation step of the world. With it, an InterruptionHandler decides whether to
trigger its event and also specifies this event. The other method is used to set the world
of an InterruptionHandler and gets called when one is added to a world.

Basically, two forms of InterruptionHandlers can be identified. One, which gets
triggered by time, either periodically or at some specific time in the simulation. The
other one gets triggered by some input, for example by a user via the GUI. The pa-
rameter millisGone, which defines the duration of the simulation step, can be used for
periodically triggered InterruptionHandlers. For example, a time triggered interrup-
tion handler may be implemented, that changes the movement speed of a given robot at
a specific point in time. The implementation of a user triggered interruption handler,
which is used to set obstacles into the world during a simulation run, is presented in
section 4.2.2.

3.3 Module allianceCore

The module allianceCore contains all classes that are essential for using the AL-
LIANCE architecture, as described in section 2.2. Combined with swarmulatorCore,
these two modules provide all necessary functionality to design experiments using the
ALLIANCE architecture and to simulate them. The following sections give an overview
of the core classes.

3.3.1 BehaviorSet

The module allianceCore provides an abstract class BehaviorSet, which obviously
is used to create specific behavior sets. An example for a concrete implementation
of a behavior set is given later on. As described in section 2.2, every BehaviorSet

is a concrete realization of a Task. The Task is mainly used just for reference in
broadcasts, but it can also be prioritized and indicates whether multiple robots may
perform it simultaneously.

A BehaviorSet can be either active, hibernating or waiting. The first two states
are self-explanatory, an active behavior set gets executed, while the motivation of a
hibernating one is below the threshold of activation. The last state is used, when robot
ri

1 wants to activate its behavior set aij , while another robot executes task hi(aij).
In this case, robot ri is broadcasting messages to indicate that it wants to take over
the respective task. When the other robot acquiesces the task, the BehaviorSet aij of
robot ri gets activated.

1For a specification of this notation, see section 2.2.2.

16 CHAPTER 3. ALLIANCE SIMULATOR

A concrete implementation of this abstract BehaviorSet needs to specify among
other things, what the robot should do when it executes the associated Task. As differ-
ent robots may have different ways to perform the same task, this is in no way deter-
mined by the Task, associated to the concrete BehaviorSet. For this purpose, the ab-
stract method public abstract void doAction(int millisGone) is provided, where
the parameter millisGone gives the duration of the simulation step.

3.3.2 MotivationalBehavior

The abstract class MotivationalBehavior is a basic implementation of the motiva-
tional behavior used in ALLIANCE, which was described in section 2.2.2. It obviously
holds all parameters defined in that section, as well as a method for every function in
section 2.2.2. Additionally, as some of the parameters are bound to other robots and
as the computation of the motivation needs to check for received broadcast messages
by other robots, every MotivationalBehavior manages a list of all team members. It
is obvious, that a MotivationalBehavior also holds a reference to the behavior set it
controls.

To compute the motivation of activation for its behavior set, the Motivational-

Behavior provides a method, public void computeMotivation(long time). Basi-
cally, it is an implementation of function 2.7 from section 2.2.2, where the parameter
time gives the time of the simulation at which to compute the motivation. This method
also checks, whether the state of the associated BehaviorSet needs to be changed. If
the motivation exceeds the threshold of activation, the behavior set gets activated or
is set waiting, when no other robot is performing the respective task or when another
robot is performing the task, respectively. Otherwise, it is set hibernating.

A concrete implementation of such a MotivationalBehavior only has to specify
the method public boolean computeSensoryFeedback(long time). This method
indicates whether the associated behavior set is applicable at the time given by the
parameter time. For example, a behavior set may only be applicable when the robot
possesses a specific sensor, or after a specific event has happened.

Parameter Setting

As ALLIANCE uses a lot of parameters for every MotivationalBehavior, the overall
number of parameters which have to be set by the designer can be huge, depending
on the number of robots in the environment and the amount of behavior sets of every
robot. Additionally, if changes to the experiment are made, such as the exclusion of
one robot, the parameters of all motivational behaviors need to be adapted, which can
be fairly tedious. For this reason, the parameters can be set using a .properties file.
The structure of this file is shown in figure 3.4.

As the specific value of the parameters have no relevance right now, the variable
〈value〉 is used. The variable 〈motivationalBehavior〉 denotes for which Motivational-

Behavior this parameter is to set. As described in section 2.2.2, every robot may have
different parameters timeWillingToAffect and slowImpatience for different team
members. Therefore, those two parameters are also bound to a robot, as indicated by
the variable 〈robot〉.

If now the experiment should be changed, say a robot or some motivational behavior
may be excluded, the designer doesn’t have to manually adapt all the parameters. As
the parameters get set during the instantiation of a MotivationalBehavior, obviously

3.3. MODULE ALLIANCECORE 17

1 threshold = <value >

2

3 broadcastRate.<motivationalBehavior > = <value >

4 timeAllowedTillCeased.<motivationalBehavior > = <value >

5 timeWillingToAffect.<robot >.< motivationalBehavior > = <value >

6 slowImpatience.<robot >.< motivationalBehavior > = <value >

7 fastImpatience.<motivationalBehavior > = <value >

8 timeBeforeYielding.<motivationalBehavior > = <value >

9 timeBeforeGivingUp.<motivationalBehavior > = <value >

Figure 3.4: The general structure of the properties file for the parameters.

only those parameters will be loaded which are actually used in the experiment. Sim-
ilarly, only as many parameters for timeWillingToAffect and slowImpatience are
set as there are robots in the simulation. Again, every MotivationalBehavior holds
a list of all team members.

3.3.3 Robot

The abstract class Robot can be extended for a concrete implementation of robots. As a
Component, it is associated to a World and resides at some position in this world. Every
Robot manages a list of its MotivationalBehaviors, as well as a TeamBroadcast, the
basic class for a broadcast unit. The communication mechanism is detailed in the next
section.

In the Component-inherited method public void computeStep(int millisGone),
which gets invoked in every simulation step, the motivations of all Motivational-

Behaviors get calculated via the provided method. If a BehaviorSet gets activated
during the computation, its method public void doAction(int millisGone) will be
called. However, if the behavior set waits to be activated, it causes the agent to broad-
cast a message to indicate that the robot wants to take over a task which is currently
performed by a team member. If the robot that is currently executing this task receives
this broadcast message, it will acquiesce the task after the time period given by the
parameter ψij(t) (the time before yielding).

3.3.4 Communication

In the ALLIANCE architecture, robots communicate by broadcasting messages. On
the one hand, a robot broadcasts heartbeat messages at a pre-specified rate, to inform
its team members when it takes over a task. This kind of message is used to reduce the
need for perceptual abilities of the robots, as they get informed of their team members’
actions. On the other hand, the broadcast messages may be used to propagate specific
information between the robots, such as the discovery and the position of an object
that is relevant to the mission.

To meet these requirements, an interface IBroadcastMessage is provided in the
module allianceCore, which specifies the broadcast messages and also a class Team-

Broadcast, which manages the broadcast messages and therefore serves as a basic class
for a broadcast unit. As illustrated by figure 3.5, the interface contains a few methods
that allow to extract specific information from the message.

These methods are self-explanatory. Obviously, getTask() returns the Task this
message is about, whereas getTime() returns the time of the simulation this message
has been broadcasted. Of course, getRobot() can be used to retrieve the Robot that

18 CHAPTER 3. ALLIANCE SIMULATOR

1 public interface IBroadcastMessage {

2

3 public Task getTask ();

4

5 public long getTime ();

6

7 public Agent getRobot ();

8

9 public Object getMessageContent ();

10 }

Figure 3.5: Code-excerpt of the IBroadcastMessage interface.

broadcasted the message. Lastly, a method to get the message content is provided,
getMessageContent(). However, if the message is used to broadcast a variety of
information, such as multiple coordinates, it may be easier to add methods in the
concrete implementation of IBroadcastMessage, especially for the needed purpose.

For the heartbeat messages, a default implementation for broadcast messages is
included, the StringBroadcastMessage. Its message content is represented by a single
String. However, as the content is in essence irrelevant for the ALLIANCE function-
alities for this kind of broadcast, the message content is only used for possible logging
purposes.

The provided class TeamBroadcast is a basic implementation of a broadcast unit.
In this simple form, it holds a list of IBroadcastMessages. Additionally, it provides
methods to receive messages and to filter and retrieve the messages. This makes it
possible for example, to return a list of broadcast messages from a specific robot that
were received in a given time interval. Again, if messages with elaborate content are
used additionally to the ALLIANCE-specific heartbeat messages, it may be necessary
to extend this class for advanced filtering methods.

In the basic TeamBroadcast, the messages are stored forever. This obviously creates
performance issues, which should be addressed in an extended broadcast unit. Although
most of the messages become obsolete very quickly, it needs to be considered that
some aspects of ALLIANCE require information whether a robot has received its first
broadcast message concerning a given task from a team member.

3.4 Module allianceWasteMission

The last of the three modules contains the specific classes of one or multiple exper-
iments. This section presents some of these classes and basically gives instructions
how to implement a new experiment in this framework. The next chapter presents the
concrete implementation of this module.

3.4.1 Requirements

Obviously, an experiment can only be conducted if it is sufficiently specified. In order
to design a world, the environment has to be defined, according to the characteristics
of section 2.1.2. Every component that should be used in the experiment has to be
specified, such as obstacles or items a robot could pick up, but also the robots them-
selves. For the latter, a detailed description of their sensors and actuators is absolutely
essential. Of course, a mission for the robot team and therefore a number of tasks have

3.5. SUMMARY 19

to be created. Additionally, the concrete behavior sets and motivational behaviors have
to be designed, according to the tasks and the abilities of the robots. An example of
such a specification is given in chapter 4.

3.4.2 Implementation

Assuming the complete specification as described in the previous section is given, now
the experiment can be implemented. First, all the behavior sets and motivational be-
haviors are implemented, based on their respective abstract classes that were described
in section 3.3. To decide whether its behavior set is applicable, the motivational behav-
ior can use varying criteria, such as capabilities or knowledge of a robot. A behavior
set might only be applicable for example, if the robot possesses a specific sensor, or if
it knows the coordinates of a specific component. The latter condition may be accom-
plished using extended broadcast messages, as it is the case in the experiment which
was conducted in chapter 4. In such a case it might be useful to extend the functionality
of the TeamBroadcast, as indicated in section 3.3.

Second, the sensors have to be implemented, followed by the robots, which are based
on the provided abstract class Robot. That class obviously should hold all the sensors
the specific robot should have. Additionally, it should provide methods for the actions
this robot can perform. For example, this class needs to specify how a robot picks up
objects, if it is designed to do so. Furthermore, since low-level tasks (such as obstacle
avoidance) are not modelled as behavior sets, they also have to be implemented in this
class.

Of course, if it is a dynamic environment, or if the experiment should include
failures such as faulty sensors or actuators, the appropriate handlers need to be created,
implementing the InterruptionHandler interface.

After all Components of this experiment are implemented, the world itself can be re-
alized by extending the IWorldFactory interface, provided by the module swarmulator-
Core. In its method createWorld(String logFolder, long randomSeed), all neces-
sary classes for the experiment are instantiated. Due to dependencies, the tasks should
be created first, followed by the robots and their respective behavior sets. As the mo-
tivational behaviors hold references of all robots and their behavior sets, they should
be instantiated last.

3.5 Summary

The basic overview of the simulator has been presented in this chapter. It consists of
three modules, swarmulatorCore, allianceCore and allianceWasteMission. The
first two modules were described in detail, while the last module was only informally
pictured, since it will be detailed in the next chapter.

As a basis for the simulator, the Swarmulator by Martin Burger [Bur12] has been
used, whose core classes are found in the first module. The Swarmulator has also been
extended, to model obstacles and to interrupt simulation runs at runtime to change
some conditions.

The second module contains the basic functionality of the ALLIANCE architecture,
as it was described in the previous chapter. It provides basic classes for behavior sets,
motivational behaviors, robots and the communication system.

The last module, which contains an implementation of a specific case study, is
presented in detail in the next chapter.

20 CHAPTER 3. ALLIANCE SIMULATOR

Chapter 4

Case Study

Now, that the framework of a simulator for the ALLIANCE architecture has been laid
out in the previous chapter, an experiment can be implemented. The chosen scenario for
that experiment is the hazardous waste cleanup mission, as it was conducted by Parker
[Par98]. Although Parker used real robots in a laboratory version of this scenario, the
results should be somewhat comparable, as the simulation closely mirrors the laboratory
version. But it should be noted, that the parameters used for the motivational behaviors
are not optimized. It was not a goal of this thesis to produce an elaborate set of
parameters.

Corresponding to the overall architecture described in section 3.1, the implementa-
tion of this experiment is included in the module allianceTest.

This chapter is structured as follows: First, the waste cleanup mission is specified, as
required by section 3.4. Second, some case-specific implementations are given, followed
by an overview at the experiments which were conducted. Last, an evaluation of the
ALLIANCE architecture is given.

4.1 Waste Cleanup Mission

Before any specific classes can be implemented, the experiment has to be specified. The
following sections first define the environment, including the world and its components
and in a specific section, the robots. After that, the mission is described, by breaking it
down into its tasks, just as it is defined in section 2.1.3. In a nutshell, the waste cleanup
mission demands from a team of robots to find spill locations and subsequently move
spill items to a desired location, while periodically reporting the progress to a human
who is monitoring the experiment.

4.1.1 The Environment

According to section 2.1.2, the environment of the waste cleanup mission can be char-
acterized in the following way: As the robots’ sensors have only limited range, the
environment is partially observable. One of the assumptions made by Parker is, that
the robots on a team do not lie and are not intentionally adversarial [Par98]. Since there
is only one team of robots that all work together, the environment is obviously multia-
gent and clearly cooperative. Section 4.1.2 will further illustrate, that this environment
is episodic, because the currently selected action of a robot does not influence its future
actions. Lastly, it is dynamic, as the simulation can be interrupted via the interruption
handler mechanism as described in section 3.2.2.2, for example to set obstacles.

21

22 CHAPTER 4. CASE STUDY

Figure 4.1: The experimental mission at the beginning.

4.1.1.1 The World and its Components

The world of these experiments consists of a floor and a rectangular border. The floor
has no effect on other components whatsoever, while the border effectively limits the
area for components to live in. The world contains three robots, which are described in
more detail in the following section. Furthermore, there are two initial spill locations,
which contain an arbitrary number of waste items, the desired final spill location (also
referred to as waste deposit) and a site from which to report progress. This site simply
changes its color in the graphical view, to indicate that a robot has just reported
the progress. To retrieve actual data of the simulation, the log files can be checked.
The coordinates relative to the border are as follows: The spill locations are located
at one third of the border’s width and at one and two thirds of the border’s height
respectively. The waste deposit is located at four fifths of the border’s width at the
center of the room. This information is used later on when defining the behavior sets
of the robots, as they don’t know the exact coordinates of the locations, but only these
relative coordinates.

This initial world is illustrated in figure 4.1. The rectangle to the left is the report
progress site, on which the three robots start their mission. They all initially face the
left wall of the border. The three large circles represent the initial (in the middle) and
desired final (to the right) spill locations, respectively, while the huge number of small
green circles are waste items, which are located at random positions, but exclusively
inside the initial spill locations.

Figure 4.2 shows a world after some simulation time. The green robot has just
reported the progress at the respective site, which changed its color to indicate that
a progress report has been made. The other two robots are currently carrying waste
items and are on their way to the waste deposit, where already a number of waste
items have been dropped. The dark rectangle to the upper-left of the blue robot, which

4.1. WASTE CLEANUP MISSION 23

Figure 4.2: The experimental mission after some simulation time.

currently performs the behavior set BS: Move-Spill-1, is an obstacle, that obviously
has to be avoided while moving between the upper initial and the final spill locations.
This obstacle has been added during the simulation run by using a specific interruption
handler that is presented in section 4.2.2.

4.1.1.2 The Robots

This experiment uses homogeneous robots with similar abilities. However, only one of
them, the blue one, is designed to have side sensors for border detection. This grants it
the ability to follow the walls of the border. This property will be utilized in the next
section with a special behavior set.

The robots all share the same set of specifications, which are now defined. A robot
is of circular shape and can turn on the spot, while it only can move in the direction
it is looking at. Additionally, a robot can pick up a waste item from the floor, carry
it and drop it onto the floor. Every robot comes with a variety of sensors, including
a sensor for waste items, sensors for the spill locations and the report progress site, a
sensor to detect the border and a sensor for collision avoidance. As mentioned earlier,
the border detecting sensor can differ in its functionality, as one robot can detect the
border to its front and to its side, while the other two only can detect the border to
their front. According to sections 2.1.4 and 2.2.1, the low level obstacle-avoidance is
not designed as a behavior set, but will be modelled within the robots. Section 4.2.1
describes the obstacle avoidance as it is used in this experiment.

4.1.2 The Mission

The mission the just defined robot team has to achieve is composed of the following
distinct tasks: As the robots do not know the exact coordinates of the initial and

24 CHAPTER 4. CASE STUDY

Figure 4.3: Organization of the concrete motivational behaviors, the corresponding
behavior sets, the low-level task avoid-obstacles and the various inputs and outputs
of the hazardous waste cleanup mission. The input Side IRs indicates whether the
robot can detect the border to its side, while the output Radio Report refers to the
action a robot performs when it is reporting the progress. (taken from [Par98, p. 12])

the desired final spill locations, but only their positions relative to the border, they
need to explore the minimum and maximum coordinates of the room to calculate the
absolute positions of the locations. This task is referred to as find-locations. The second
task is actually split into two, move-spill(top) and move-spill(bottom), where top and
bottom refer to the according spill locations. This task, where the robots move the
spill locations to the waste deposit, forms the main part of the mission. The last task,
report-progress, requires the robots to periodically report the progress at the respective
site. To minimize interference among the robots, every task can only be executed by
one robot at a time.

These tasks will now be described in more detail. Additionally, for every task, the
corresponding behavior sets will be defined. As the only competence of the specific
motivational behaviors is only to decide whether their behavior set is applicable or
not, they are not presented in the following sections. Instead, the descriptions of
the behavior sets also specify their individual applicability. The emerging behavior
organization for the hazardous waste cleanup is shown in figure 4.3.

4.1.2.1 find-locations

As mentioned earlier, the robots do not know the exact positions of the initial spill
locations and the waste deposit. However, they have qualitative information about
those positions, such as “the top spill is located in the upper half of the room, at one
third of its width”. All of this information is given relative to the border, therefore
the robots first have to find out the minimum and maximum coordinates of it, before
they can calculate and communicate the positions of the locations to the other team
members.

Since the robots can have different sensors to detect the border, two behavior sets
are designed, find-locations-methodical and find-locations-wander, to realize this task.

4.1. WASTE CLEANUP MISSION 25

Figure 4.4: The organization within the find-locations-wander behavior set, as de-
scribed in section 4.1.2.1. (taken from [Par98, p. 13])

Both of them require, that the workspace is of rectangular shape and that the walls of
the border are parallel to the axes of the global coordinate system.

The methodical version to find the spill locations requires furthermore, that the
robot is able to detect the border to its side. Therefore, this behavior set is only
applicable if the robot in fact has intact side sensors. When activated, it causes the
robot to perform the following actions: First, the robot moves to the left side of the
border. Every time the robot detects a wall of the border in front, it turns 90 degrees
clockwise and follows the just discovered wall with its side sensor. The robot also
constantly keeps track of the minimum and maximum x and y coordinates it discovers.
When all four walls of the border have been detected, the robot calculates the spill
locations based on these x and y coordinates and on the qualitative information it has
been given. These locations are then communicated to the other team members via a
special broadcast message, which is described in 4.2.3.

The wander version of finding the spill locations avoids the need for a side sensor in
the following way: When activated, it causes the robot to wander in the four directions
west, north, east and south, each for a fixed time period. Again, the robot tracks
the minimum and maximum x and y positions and calculates and communicates the
locations when the wandering period is finished. Figure 4.4 illustrates this behavior set.
As this version is less reliable than the methodical one, its impatience rate as defined in
section 2.2.2 should be lower than that of the behavior set find-locations-methodical.

Both behavior sets use the same method of obstacle avoidance. When a robot
discovers an obstacle at the wall, it avoids it by moving in direction of the center of the
room. At the moment the obstacle is cleared, the robot continues its movement in the
original direction, without returning to the specific border.

26 CHAPTER 4. CASE STUDY

4.1.2.2 move-spill

After the locations have been found, the robots can begin to move waste items from
the initial spill locations to the desired final location, the waste deposit. For this
purpose, the behavior set move-spill-(loc) is defined. It is applicable whenever there
are waste items at the spill location loc, when the initial and final spill locations are
known and when no other robot currently works on that spill location. When this
behavior set is activated, it causes the robot to execute the following actions: First,
if the robot is not already there, it moves to the initial spill location denoted by loc.
At the spill location, the robot activates its waste sensor to retrieve the position of
a nearby waste item. Subsequently it moves to the location of that waste item and
picks it up. While carrying the waste item, the robot moves to the desired final spill
location. Upon arriving at the waste deposit, the waste item gets dropped. Again, to
minimize interference among the robots, only one robot at a time works on the given
spill location.

4.1.2.3 report-progress

The task report-progress requires the robot team to periodically report the progress of
the mission to a human monitoring the system. In this experiment it is sufficient to just
indicate that the report has occurred, as it is done via the change of colors of the report
progress site. To gather actual information of the progress, one could simply open the
view of the simulation of interest or check the various log files after the simulation is
finished.

This task only needs to be done by the team as a whole, which means it is sufficient
that only one robot reports the progress, while the others continue with the execution
of their respective tasks. Additionally, the progress report only has to be done at an
approximate time period. Therefore it is adequate, that the corresponding behavior
set will only be applicable when it’s time for another report, but the actual report will
be done after a robot has activated that behavior set and moved to the report progress
site. If that robot is at a location far away from the report progress site, the report
will be delayed by the time it takes the robot to activate the behavior set and to move
to the site.

To perform this task, the behavior set report-progress is defined, which, after the
locations are discovered, is periodically applicable as specified by the given time period.
It causes the robot to move to the vicinity of the report progress site and inform the
humans monitoring the system of the progress of the mission by causing that site to
change its color for a short period of time.

4.2 Case-specific Implementations

Section 3.4 already presented some of the classes needed for the implementation of an
experiment. As the hazardous waste cleanup is now properly specified, a detailed look
at some specific implementations can be given. This section focuses on the extensions
that were made to the Swarmulator, namely the addition of obstacles and therefore the
need for obstacle avoidance, the possibility to interrupt the simulation and change the
conditions, and on the inter-robot communication, the broadcast system.

4.2. CASE-SPECIFIC IMPLEMENTATIONS 27

Figure 4.5: The collision avoidance sensor checks three points in front of the robot,
indicated by the three dots.

4.2.1 Obstacles and Obstacle Avoidance

It was decided, that for the simulation of the hazardous waste cleanup mission, obstacles
of a simple rectangular shape which are parallel to the axes of the global coordinate
system are sufficient. This allows some simplifications for the obstacle avoidance, as
can be seen later on in this section. Obviously, obstacles are extended Components,
which are placed in the currently simulated world. They have a penetrability of 0.0,
which makes them completely impenetrable. However, an obstacle may overlap other
components. It should be noted that obstacles can be set anywhere in the world,
including the space outside the border. The position of an obstacle is given by the
coordinates of its upper left corner and its width and height which can be of arbitrary
value.

As noted on multiple occasions before, the obstacle-avoidance, as a low-level task is
not modelled as a behavior set. In this case, it is implemented directly into the robot’s
method public void moveWithSpeed(float speed, int millisGone), which is the
basic movement method and causes the robot to move in its current direction with the
specified speed. Every time this method gets called to move a robot in the current
direction, the following steps are regarded to ensure that it doesn’t hit an obstacle.

At any time, the robot checks if there is an obstacle in front of him. To do so,
the CollisionAvoidanceSensor is used, which looks for three points in front of the
robot, if any of them touches an obstacle. The three points are located directly in
front of the robot and slightly to the left, respectively to the right, depending on the
robots radius. This can be seen in figure 4.5. When the sensor detects an obstacle, the
robots orientation is aligned so that it is parallel to the side of the obstacle. Due to
the aforementioned simplifications, this is realized by setting the orientation to one of
the four directions (north, east, south, west). The robot also remembers that it is just
avoiding an obstacle.

When the robot is currently avoiding an obstacle, its orientation remains aligned to
it as long as the obstacle lays between the robot and its target. As soon as the robot
clears the obstacle, it checks the position of the target in relation to the robots current
(still aligned to the obstacle) orientation. If it lays in the back of the robot1, the next
side of the obstacle has to be avoided. Therefore its orientation is rotated 90 degrees

1based upon an imaginary line through the center of the robot

28 CHAPTER 4. CASE STUDY

Figure 4.6: The points that are checked by the side sensor of the collision avoidance
include the one indicated by the dot directly at the edge of the obstacle. If that point
is outside of the obstacle, the robot determines its new orientation, based on whether
the target lays in its back or in its front. This is illustrated by the dashed line, which
is drawn from left to right through the robot. In this case, if the target is somewhere
above that line, the robot turns 90 degrees counterclockwise as it still needs to avoid
the obstacle, otherwise it can freely move to the target.

to align it to that side of the obstacle. This is shown in figure 4.6.

4.2.2 Interruption Handler

The implementations of the InterruptionHandler can be divided into two categories.
The first type are interruption handlers that get triggered via some time related cri-
teria, whereas the second type of interruption handlers get triggered via a user input.
A time triggered interruption handler can either count the time with the parameter
millisGone, to possibly trigger its event periodically. Alternatively, the world time
may be queried.

In the following, a closer look at the class UTObstacleInterruption is presented,
as shown by figure 4.7. It realizes a user triggered handler that sets obstacles. This
interruption handler holds a list of rectangles, which represent the obstacles that are
to set when it gets triggered and a variable, trigger, to indicate that the event should
be triggered. Two methods are of particular high interest, since they determine the
behavior of this handler.

The specific values for the rectangles are entered via a graphical user interface,
which then calls the method setTrigger(...). This graphical interface can be seen
in figure 4.11. The user may add an arbitrary number of obstacles, which are stored
in the list of rectangles, managed by this class. In the next step of the simulation, the
inherited method triggerEvent(int millisGone) is called, where the obstacles are
instantiated. This means, when the simulation is paused, the user who set the obstacles
can’t see them instantly, as they are not yet instantiated and therefore no image data
has been updated for the view.

4.2.3 Communication

Section 3.4 already described the typical steps when implementing the broadcast system
for an experiment. This section takes a closer look at the broadcast unit and the

4.3. EXPERIMENTS 29

1 public void triggerEvent(int millisGone) {

2 i f (trigger) {

3 trigger = f a l se ;
4 for (Rectangle2D rect : rects) {

5 new ObstacleRect(world , rect , 0);

6 }

7 rects = new ArrayList <Rectangle2D >();

8 }

9 }

10

11 public void setTrigger(f loat posX , f loat posY ,

12 f loat width , f loat height) {

13 trigger = true;
14 rects.add(new Rectangle2D.Float(posX , posY , width , height));

15 }

Figure 4.7: Code of the class UTObstacleInterruption.

broadcast messages that were implemented for the hazardous waste cleanup mission.

As mentioned above, the behavior sets find-locations-methodical and find-locations-
wander require a special broadcast message, that enables the robots to broadcast in-
formation about the positions of the spill locations. The default implementation for
broadcast messages, StringBroadcastMessage could be used, but it would be laborious
to extract the coordinates for the specific locations. Therefore, another implementation
of the IBroadcastMessage has been devised, the PositionUpdateMessage. In addition
to the basic information set (which robot broadcasted it, which task is concerned and
at which time the message has been broadcasted), this message stores the coordinates
of the locations that were calculated by the given robot and also provides the necessary
methods to retrieve these coordinates.

PositionUpdateMessages are also used to decide whether the behavior sets are
applicable or not. The two behavior sets to find the locations are only applicable
when the exact positions are unknown, i.e. when no PositionUpdateMessage has
been broadcasted, whereas the other two behavior sets are only applicable after the
locations have been found. As the specific motivational behaviors – which each decide
the applicability of their associated behavior set – remember whether the locations are
known, the PositionUpdateMessage (only one message of this kind is broadcasted in
this mission) may be deleted shortly after it has been broadcasted.

A specific WasteTeamBroadcast also has been implemented, which extends the basic
TeamBroadcast to provide a method that returns a list of all PositionUpdateMessages
that were broadcasted. These two classes now enable the robots to effectively broadcast
and retrieve the calculated coordinates of the relevant locations.

It should be noted, that in this implementation, the robots all share the same
broadcast unit. Also, there remains one minor issue with the broadcast mechanism,
concerning the point of time at which broadcast messages become visible for other team
members. This will be discussed in section 4.4.

4.3 Experiments

Two experiments were conducted to show the functionality of the developed simulator
and the ALLIANCE framework. The first one without any interruption, in the second
one, one robot has been trapped. The following sections present these experiments and

30 CHAPTER 4. CASE STUDY

Figure 4.8: The motivational levels of all the behavior sets in robot blue.

Figure 4.9: The motivational levels of the behavior sets of all robots for moving the
upper spill location.

offer a short discussion of the results, backed by a graphical analysis of some of the log
files. Note that no elaborate parameter settings for the motivational behaviors and no
adaption mechanism for the parameters were used.

4.3.1 No Interruption

The first experiment features a simulation run with no interruptions. At the beginning
of the mission, only the two behavior sets for finding the locations are applicable. After
some time, the blue robot activates its behavior set find-locations-methodical. Upon
discovering all walls of the border and calculating the positions of the spill locations,
the blue robot broadcasts a PositionUpdateMessage and the robots take turns at
moving the spill locations and periodically reporting the progress.

Figure 4.8 shows the motivational levels of all behavior sets of robot blue. It can
be observed that its behavior set find-locations-methodical is activated shortly after
the beginning of the mission, which causes the motivations of its behavior set find-
locations-wander to be reset to 0 and to be inhibited as long as the first behavior set
remains active. After broadcasting the PositionUpdateMessage, the applicability of
the behavior sets change, as there is no need to find the locations anymore. Therefore,
the motivational levels for the other three behavior sets rise and are reset, depending
on the task selection of the robots.

Figure 4.9 compares the motivational levels of the behavior set move-spill-(top) of
all robots. After the locations have been discovered, the motivational levels begin to
increase for all three robots. The motivation for the blue robot gets reset three times in

4.3. EXPERIMENTS 31

the beginning. First, because the robot has activated its behavior set report-progress.
The second time, because the gold robot has activated its behavior set move-spill-
(top) and the third time, because the blue robot has activated its behavior set move-
spill-(bottom). The gold robot is the first one to activate this behavior set, but gets
interrupted after a short time, although neither its time before yielding, ψij(t), nor its
time before giving up, λij(t), has been reached. But as specified by function 2.5 in
section 2.2.2, the motivation of a behavior gets reset to 0 when another robot takes
over the task for the first time. In this case, the green robot activates its behavior set
move-spill-(top) for the first time. The ellipse in figure 4.9 highlights this event.

At that point a curiosity can be observed, as the motivational level of the green robot
immediately returns to 0, which means it stops the execution of the task as soon as
the motivation for its behavior set move-spill-(top) reaches the threshold of activation.
As the gold robot currently performs the according task, this behavior set actually is
not activated, but set waiting. Therefore, the green robot broadcasts a communication
message to indicate it wants to take over the task. In the next simulation step, this
causes the gold robot to stop the execution of its behavior set move-spill-(top), which
can be observed in the highlighted area of figure 4.9, as its motivational level gets reset
to 0. Again, the gold robot yields the task, because another robot wants to execute it
for the first time. The green robot would now be able to activate the behavior set, but
in the same simulation step it broadcasts the aforementioned message, it also activates
its behavior set report-progress (which is not illustrated in figure 4.9). This obviously
causes the motivation of the behavior set move-spill-(top) of the green robot to be reset
to 0, which produces the curiosity that the green robot interrupts the execution of the
gold robot, although it actually doesn’t perform the task afterwards.

It can be observed, that there are occasions where the motivation of two behavior
sets from different robots both reach the threshold of activation, for example shortly
after the highlighted area of figure 4.9. In such cases, the behavior set that reaches
the threshold later is set waiting, while the other one continues to be active until the
according robot decides to acquiesce the task.

4.3.2 Trapping one Robot

In this experiment, the blue robot gets trapped while performing its behavior set
find-locations-methodical. This is done by surrounding it with obstacles, using the
UTObstacleInterruption. Figure 4.10 shows the trapped robot and the graphical
interface of the interruption handler.

It can be seen in figure 4.11, that the other two robots get increasingly impatient.
After some time, the gold robot activates its behavior set find-locations-wander and
therefore takes over the task. This causes the motivational levels of the other two robots
to be reset to 0. Afterwards they rise again, for a time period with the slow impatience
rate2 and after that with the fast impatience rate. This is highlighted in figure 4.11,
where a definite bend in the motivational levels can be observed, shortly before the
behavior sets of the blue and the gold robots reach the threshold for a second time.

Upon reaching the threshold of activation again, find-locations-methodical of the
blue robot is set waiting for a short time, because it is not the first time the robot
wants to execute the task and the gold robot doesn’t want to acquiesce the task yet.
The green robot however is permitted to take over the task, as it is the first time
this robot wants to perform it. Concurrently, the motivation of the other two robots

2This time period is given by the parameter φij(k, t), as defined in section 2.2.2.

32 CHAPTER 4. CASE STUDY

Figure 4.10: The blue robot has been trapped at the border by surrounding it with
obstacles, set with the graphic interface of the UTObstacleInterruption.

Figure 4.11: The motivational levels of the behavior sets find-locations-methodical of
the blue robot (which gets trapped) and find-locations-wander of the other two robots.
This figure only shows the period of time where these behavior sets are applicable
(i.e. while the locations need to be found).

get reset to 0 and afterwards increase in the same manner as just described. They
eventually both reach the threshold again, but as both the blue and the gold robot
have executed the task at some point in time, they are set waiting. Therefore the green
robot can finish its behavior set find-locations-wander without any interruptions, as it
doesn’t decide to acquiesce the task. After finding all locations, the green robots sends
a PositionUpdateMessage, which in turn causes a reset of all motivational behaviors,
because they are not applicable anymore.

After the green robot has completed the task find-locations, the robots again take
turns at moving the spill locations and periodically reporting the progress. But since the
blue robot is still trapped, it cannot properly execute any of these tasks and therefore
decreases the overall efficiency of the robot team. It can also be observed, that the
task report-progress is not accurately performed anymore, which can be attributed to
poor parameter settings: The two non-blocked robots only consider to activate their
behavior set report-progress, when they aren’t currently executing another task. In
situations where both robots (gold and green) currently move waste items, the report
only can be done when one of the robots has acquiesced the task. This issue could be
solved by adapting the parameters ψij(t) and λij(t) to the time period the progress
reports should be made. This would ensure, that a robot is available at approximately
the time a new progress report has to be done.

4.4. EVALUATION OF THE EXTENDED SIMULATOR 33

4.4 Evaluation of the Extended Simulator

Now, that experimental results of the hazardous waste cleanup mission are available,
the developed simulator and the implemented case study can be evaluated. Since Parker
conducted a laboratory version of this experiment, the results from section 4.3 can be
compared to those presented in [Par98].

Section 4.3 shows obviously, that the implementation of the ALLIANCE architec-
ture is working with the implemented case study. In the experiments, the motivation of
a behavior set only increases when it is applicable and it gets reset to 0 when another
behavior set in a given robot is activated, when another robot takes over the task for the
first time, or when the robot acquiesces the task. This meets exactly the specifications
from section 2.2.2.

With the extended functionality of the simulator to create obstacles and to change
conditions of a simulation at runtime, it is also possible to create failures within the
robots or for example to trap a robot, as described in section 4.3.2. In such experiments,
the robots showed the ability, depending on the parameter settings, to furthermore
execute the different tasks and therefore to accomplish the mission despite the given
problems. However, the overall performance of the team suffers, which is no surprise, as
the robot team has been reduced to two functional robots in the conducted experiments.

In comparison with the results Parker achieved, some differences can be observed.
In the first experiment in section 4.3, the robots took turns at moving the spills and
reporting the progress, whereas in Parkers experiment, every robot specialized on one
task. Two robots continually each worked on one spill location, while the remaining
robot exclusively reported the progress. This behavior could be achieved by prop-
erly adjusting the parameters. One major difference that occurred is, that in the
experiments from section 4.3, the robots interrupt each other quite quickly whenever
a behavior set becomes applicable for the first time. This behavior is specified by the
ALLIANCE architecture in the function impatience reset3, but isn’t observed in the
experimental results from Parker.

As mentioned earlier, one issue remains concerning the point in time when a broad-
cast message is sent by a robot. A robot instantly broadcasts a message, as soon as it
has a reason to do so. In combination with the stepwise simulation, this means that
the robots may see different conditions in the same simulation step, which computes all
actions of a fixed point in time. As described in section 3.2, the Components of a world
get computed in the order they have been initialized. In the experiments in section 4.3,
first the motivational levels of all behavior sets of the blue robot get processed, then
those of the gold and lastly those of the green robot. If for example the gold robot
takes over a task, it instantly broadcasts a message. The green robot now reacts to this
message, whereas the blue robot – whose simulation step already has been computed
– couldn’t react to it.

This issue could be solved by broadcasting all the messages at the end of a simulation
step, but it was chosen not to do so. The reason the current implementation has been
kept is, because as a side effect, it is ensured that only one robot can activate a behavior
set in a given simulation step, as the subsequent robots already received the broadcast
messages sent in that step and therefore reacted to possible cross-inhibition.

3See [Par98] or section 2.2.2.

34 CHAPTER 4. CASE STUDY

4.5 Summary

This chapter presented an implementation of a case study for the ALLIANCE frame-
work. First, the case study has been defined, based on chapter 2, followed by a pre-
sentation of some case-specific implementations. Additionally, a few experiments were
conducted and their results were discussed. Lastly, the simulator and the case study
were evaluated.

As a scenario for the case study, the hazardous waste cleanup mission, conducted in
a laboratory version by Parker [Par98] has been chosen: A team of three robots need to
locate two spill locations and one waste deposit in a room with a border. Afterwards, the
robot team has to move waste items from the spill locations to the waste deposit, while
also periodically reporting the progress of the mission. This scenario was characterized
on the basis of the concepts introduced in section 2.1. The environment could be
identified as partially observable, cooperative multiagent and dynamic. Four behavior
sets were defined and implemented, two to find the locations, one for moving the waste
items and one for reporting the progress.

The experiments that were conducted and evaluated, demonstrated the usability
of the developed simulator and the implemented case study. Simulation runs without
interruptions, as well as simulation runs with the specified InterruptionHandlers
showed desirable outcomes. However, it could also be seen that a lot of parameters
need to be set for a simulation. This problem can be addressed by using an extension
of the ALLIANCE architecture, which is briefly discussed in chapter 5.

With the implementation of a case study, the development of the simulator within
the scope of this thesis has been completed. The next chapter gives a conclusion and
presents aspects for future work.

Chapter 5

Conclusion

This thesis presented a simulator that is capable to simulate experiments featuring
multiple robots in a dynamic environment. Additionally, depending on the experiment,
the robotic team might have to deal with uncertainty in the sensory feedback and the
task selection and task execution, as well as failures of some parts of a robot, or the
complete malfunction of a team member.

The core of the presented simulator was extracted from the Swarmulator, devel-
oped by Martin Burger [Bur12], which makes it highly extendable for any simulation
of a stepwise computed virtual world. To coordinate the robotic team, the simulator
provides an implementation of the ALLIANCE architecture, which especially addresses
the problems the robots experience amidst a dynamic environment and with uncertain-
ties and failures within the robots’ sensors and actuators. The implemented case study
makes it possible to conduct experiments right away. These experiments may also be
evaluated with the help of the detailed logfiles for each simulation run.

Although the developed simulator is fully capable to simulate experiments using
the ALLIANCE framework, there is still room for improvement. Most prominently,
there is the issue of the parameter setting for the motivational behaviors. Since a
lot of parameters have to be adjusted, it would be preferable to have an automated
way of finding a reasonable parameter setting. Parker addressed this need with the
development of the so called L-ALLIANCE system, presented in [Par95], [Par97] and
[Par98], which is an extension to the ALLIANCE architecture. The basic idea is, that
the robots monitor the performance of other robots, measured in task execution time
and therefore have a means of evaluating their own capability for the specific tasks.
With this knowledge, the impatience rates and the time a robot wants to maintain
its behavior set active before acquiescing it to another robot can be updated. An
implementation of this extension would be very useful, as it would simplify the process
of finding a proper parameter setting.

Another aspect which may be addressed in future work on the simulator is the point
in time at which broadcast messages are sent, as described in section 4.4. The problem
with the current implementation is, that different robots may see different conditions
during the same simulation step. As stated in section 4.4, this could be solved by
broadcasting all messages at the end of a simulation step, but then multiple behavior
sets performing the same task may be activated in the same step, which is a problem
that would have to be addressed too.

But even without the just mentioned aspects, the simulator is completely usable
for experiments that utilize the ALLIANCE architecture for task allocation. As Parker
stated in [Par98, p. 10], “finding the proper parameter settings in ALLIANCE has

35

36 CHAPTER 5. CONCLUSION

not proved to be difficult”. This statement was affirmed in section 4.3, where a set
of parameters, that wasn’t thoroughly elaborated, produced reasonable results. Addi-
tionally, although the issue with the broadcast system makes the simulations a little
bit less realistic, this is not a major problem, as the current implementation ensures a
flawless execution of the ALLIANCE architecture.

List of Figures

2.1 The ALLIANCE Architecture . 7

3.1 Module overview of the ALLIANCE simulator 12
3.2 Simplified representation of the MVC pattern used in the Swarmulator . 13
3.3 Code of the InterruptionHandler interface 15
3.4 The structure of the parameter’s properties file 17
3.5 Code of the IBroadcastMessage interface 18

4.1 The experimental mission at the beginning 22
4.2 The experimental mission after some time 23
4.3 Hazardous Waste Cleanup: Behavior Organization 24
4.4 Behavior Set: Find-Locations-Wander 25
4.5 Front sensor of the obstacle avoidance 27
4.6 Side sensor of the obstacle avoidance . 28
4.7 Code-excerpt of the class UTObstacleInterruption 29
4.8 Motivation of Robot Blue, no Interruption 30
4.9 Motivation Move-Spill-Top, no Interruption 30
4.10 Trapping the Blue Robot . 32
4.11 Motivation Find-Locations, Trapping one Robot 32

37

38 LIST OF FIGURES

Content of the CD

The attached CD contains the following:

• This bachelor thesis in pdf format,

• Three Java Projects “AllianceCore”, “AllianceTest” and “SwarmulatorCore” that
contain the sourcecode of the three modules of the simulator, including the prop-
erties file for the parameters that was used for the experiments,

• A jar-file “factory.jar” that can be imported into the simulator,

• The logfiles of the conducted experiments.

39

40 CONTENT OF THE CD

Bibliography

[BPG03] Maja J Matarić Brian P. Gerkey. Multi-Robot Task Allocation: Analyzing
the Complexity and Optimality of Key Architectures. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA 2003),
2003.

[BPG04] Maja J Matarić Brian P. Gerkey. A Formal Analysis and Taxonomy of Task
Allocation in Multi-Robot Systems. International Journal of Robotics Re-
search, 23(9):939–954, September 2004.

[Bur12] Martin Burger. Mechanisms for Task Allocation in Swarm Robotics. Diploma
thesis, Ludwig-Maximilians-Universität München, 2012.

[CHF04] Khiang Wee Lim Cheng-Heng Fua, Shuzhi Sam Ge. BOAs: BackOff Adaptive
scheme for Task Allocation with Fault Tolerance and Uncertainty Manage-
ment. In Proceedings of the 2004 IEEE International Symposium on Intelli-
gent Control, 2004.

[Par95] Lynne E. Parker. L-ALLIANCE: A Mechanism for Adaptive Action Selection
in Heterogeneous Multi-Robot Teams. Technical report, 1995.

[Par97] Lynne E. Parker. L-ALLIANCE: Task-Oriented Multi-Robot Learning In
Behavior-Based Systems. In Advanced Robotics, Special Issue on Selected
Papers from IROS’96, pages 305–322, 1997.

[Par98] Lynne E. Parker. ALLIANCE: An Architecture for Fault Tolerant Multi-
Robot Cooperation. IEEE Transactions on Robotics and Automation,
14(2):220–240, April 1998.

[SR10] Peter Norvig Stuart Russell. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2010.

41

	Introduction
	Objective
	Outline

	Foundations
	Concepts
	Intelligent Agents and Robots
	Environment
	Mission
	Task
	Multi Robot Task Allocation

	ALLIANCE Architecture
	Overview
	Task Selection

	Summary

	ALLIANCE Simulator
	Module Overview of the Simulator
	Module swarmulatorCore
	Overview of the Swarmulator
	Extending the Swarmulator
	Obstacle
	Interruption Handler Mechanism

	Module allianceCore
	BehaviorSet
	MotivationalBehavior
	Robot
	Communication

	Module allianceWasteMission
	Requirements
	Implementation

	Summary

	Case Study
	Waste Cleanup Mission
	The Environment
	The World and its Components
	The Robots

	The Mission
	find-locations
	move-spill
	report-progress

	Case-specific Implementations
	Obstacles and Obstacle Avoidance
	Interruption Handler
	Communication

	Experiments
	No Interruption
	Trapping one Robot

	Evaluation of the Extended Simulator
	Summary

	Conclusion
	List of Figures
	Content of the CD
	Bibliography

