
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Projektarbeit

Development of a distributed

architecture for controlling and

monitoring REFLECT systems

Gernot Pointner

Aufgabensteller: Prof.Dr. Martin Wirsing
Betreuer: Christian Kroiss
Abgabetermin: 16. Dezember 2009

Hiermit versichere ich, dass ich die vorliegende Praktikumsarbeit selbständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel ver-
wendet habe.

München, den 16. Dezember 2009

. .
(Unterschrift des Kandidaten)

Abstract

The REFLECT framework is used to create adaptive multimedia applications
and is based on the OSGi framework. This thesis gives some information about
customizing the existing REFLECT core in order to being able to access it remotely
and the development of a GUI for remote monitoring and controlling a REFLECT
application.

Contents

Abstract 5

List of Figures 9

Chapter 1. Introduction 11
1. The REFLECT Framework 11
2. Motivation for the REFLECT Remote Control Center 11
3. Used Technologies 11
3.1. OSGi 12
3.2. R-OSGi 12
3.3. RCP 12
4. An example usecase for the Remote Control Center 12

Chapter 2. Usage of the Remote Control Center 13
1. Basic overview of the GUI 13
2. Use cases 13
2.1. Connect to a Reflect application 13
2.2. Add a Property to the Property Editor 14
2.3. Edit a Property 14
2.4. Remove a property from the property Editor 14
2.5. Save a Property Editor Configuration 14
2.6. Load a Property Editor Configuration 14
2.7. Monitor a property 14
2.8. Save collected data 14
2.9. Disconnect 15

Chapter 3. Architecture of the Remote Control Center 17
1. General Overview 17
1.1. Description of the Java Packages 17
1.2. Overview of the Software modules 18
2. Detailed description of the software components 20
2.1. Controllers 20
2.1.1. Remote Controller 20
2.1.2. GUIController 20
2.2. Component Browser 20
2.3. Property Editor 20
2.4. Property Monitor 21
2.5. The Control Service 22
2.6. The Reply Service 22
3. Connecting to a REFLECT application 22
3.1. Accessing REFLECT Applications using R-OSGi 22
3.2. Basic overview of the connection process 22
3.3. Making a connection request from client side view 22
3.4. An example: Setting a component property 23

7

8 CONTENTS

3.5. Remote Property Listeners 24

Chapter 4. Adding Property domain functionality to the REFLECT
Framework 29

1. Property Domains 29
2. RangeDomains 29
3. CollectionDomain 29
4. Dynamic Property Domains 30
5. Full Domains 30

Chapter 5. Future prospects 31
1. Improving existent functionality 31
1.1. Improving the Property Monitor functionality 31
1.2. Upgrading the connection handling for Reflect App 31
2. Ideas for extending the Control Center 31
2.1. Listening on ports of components 31
2.2. Dynamic instantiation of components 31

Chapter 6. Conclusion 33

Appendix. Bibliography 35

List of Figures

2.1 The Remote Control Center GUI 13

2.2 Use case overview 14

3.1 Overview of important packages 18

3.2 Overview of software modules 19

3.3 Property Monitor class diagram 21

3.4 The basic connection process 23

3.5 Clientside sequence diagram of a connection request on client side 25

3.6 Set a property remotely using R-OSGi 26

3.7 Remote listener functionality 27

9

CHAPTER 1

Introduction

1. The REFLECT Framework

The REFLECT Framework is a Java framework based on OSGi (see 3.1) which
can be used to create adaptive multimedia applications. It is developed at the
“Lehrstuhl fuer Programmierung und Softwaretechnik” at the LMU, Munich. The
framework provides the infrastructure for Component-Based Software Engineering.
This approach offers several benefits, e.g. the possibility to reuse components in
several software projects, being able to restrict communication between different
components to those, which have explicitly been wired and the possibility to realize
information hiding for components(communication between different components
only takes place using declared interfaces).
There some parts of the framework that are worth further explanation: Components
are essential parts of a REFLECT application. Each component has a well-defined
function. There are three types of components:

• Passive Components: Offer functionality for other components (e.g. buffer-
ing and aggregating data, providing library functions. . .).

• Active Components: Running as a thread, continuously performing ac-
tions(e.g. server components waiting for requests . . .)

• Composite Components: Can consist of several components of an arbi-
trary type (also Composite Components) in order to provide functionality
using several components and introduce abstraction from the underlying
architecture.

Components can have so-called “Properties”. Those Properties are fields of the
class determing the state of the Component. These Properties can either be modi-
fiable (if a setter for this property is present) or not-modifiable (if only a getter is
present), which is automatically determined by the framework. If a property of a
component has changed, interested listeners get notified about the change.
Components can also have so-called Ports. Ports can either be declared as “Pro-
vided” or “Required” and also their connection multiplicity (n:m) can be given.
Component A which offers a provided Port c can then be connected to Component
B which requires Port c using so-called Connectors.

2. Motivation for the REFLECT Remote Control Center

The REFLECT Remote Control Center offers the possibility to monitor the
properties of components of REFLECT application via remote access while it is
running. Additionally it’s also possible to change modifiable properties at runtime
which is a big advantage over continuously changing hardcoded values within the
source and restarting the application or using XML-files containing the property
values. Especially if you want to experiment with different values, the ability to
change values at runtime can save a huge amount of time.

3. Used Technologies

11

12 1. INTRODUCTION

3.1. OSGi. The OSGi standard describes a dynamic module system for Java.
It provides standardized primitives that allow applications to be constructed from
small, reusable and collaborative modules. [All09] It follows the philosophy of a
“SOA” , a service-oriented architecture. Related program logic can be encapsulated
within so-called bundles and registered as a service, which itself can be accessed
then by other services or bundles.
OSGi aims at reducing the complexity of software systems by using components
which have a well-defined scope. For the REFLECT framework, Equinox is used
as the implementation of the OSGi standard.

3.2. R-OSGi. R-OSGi is developed by the Swiss Federal Insitute of Tech-
nology Zurich. It’s an OSGi-Bundle which allows transparent access to running
OSGi-Bundles from remote machines and facilitates distribution for arbitrary OSGi
framework implementations [Rel09] As the REFLECT framework bases on OSGi,
this technology is used to establish the communication between the REFLECT
Remote Control Center and the REFLECT application.

3.3. RCP. The Rich Client Platform can be used to build clients upon. It
uses the same technology on which the Eclipse IDE is based on. The resulting rich
applications are still based on a dynamic plug-in model, and the UI is built using
the same toolkits and extension points. [eW09]. SWT [eli09] is used for building
the GUI components on order to provide a native look and feel for all available
platforms as SWT uses native widgets.
The Remote Control Center GUI was built upon RCP as a so-called “Fat Client”.

4. An example usecase for the Remote Control Center

The REFLECT framework is used for an application, which receives data from
a driving simulator, such as acceleration , velocity or angle of the steering wheel
and tries to compute some information about the driver’s current mental state
and driving style. For this reason, the application consists of several components,
each performing a defined task (receiving data from the simulator ,aggregating and
buffering data ,performing mathematical operations on the data,sending response
to the simulator. . .) . Especially those components, which are responsible for
performing computations on the data and drawing conclusions from it have to be
tested intensively in order to return the designated results, as this isn’t a trivial task.
For this reason, the settings, which determine the behavior of these components are
made available as modifiable properties. Then the components can be fine tuned at
runtime by accessing the application using the Remote Control Center and effects
of the changes are experienced immediately. This approach saves a lot of time as
the alternative way to achieve this would be to change the values directly in the
source code and restarting the application or changing the predefined values within
XML-files which have to be read in again. As it’s possible that the properties have
to be changed very often until the designated value has been found, it’s likely that
changing the values of the properties using the Control Center saves a lot of time
towards changing values in XML-files and having to re-read them back in or even
changing the values directly in the source code.

CHAPTER 2

Usage of the Remote Control Center

1. Basic overview of the GUI

Figure 2.1. The Remote Control Center GUI

2.1 shows the GUI of the Remote Control Center. The Component Browser (1)
can be used to navigate through the available components and properties. Within
the browser you can select specific properties and choose to edit them (if they
are modifiable) or to monitor them (if they are of a type that is monitorable.)
The Property Editor (2) can be used to edit properties within the ranges of their
associated Property Domain. Property Domains can be assigned to a property in
order to constraint the range of values that can be set for this property. Finally
the Property Monitor (3) offers the possibility to monitor properties of certain
types (currently Integer and Double are supported) and save the monitored data
afterwards.

2. Use cases

2.2 shows a basic overview of the possible Use Cases for the Control Center.

2.1. Connect to a Reflect application. Select the “Connect” menu item
from the “Host” menu, enter the designated host and port and press “Connect”.
An alternative way would be to right-click on the “Not connected” - Node within
the Component Browser.

13

14 2. USAGE OF THE REMOTE CONTROL CENTER

Figure 2.2. Use case overview

2.2. Add a Property to the Property Editor. After you have connected
to a Reflect application, right-click on the designated modifiable property within
the Component Browser (modifiable properties are marked by a pencil) and choose
the “Edit this Property” item.

2.3. Edit a Property. Properties can be edited within the Property Editor
by using appropiate input methods (sliders, combo boxes, textfields. . .) .

2.4. Remove a property from the property Editor. Previously added
Properties can also be removed again from the Editor.

2.5. Save a Property Editor Configuration. Select the “Save Property
Editor” option from the “Property Editor” menu.

2.6. Load a Property Editor Configuration. After you have connected to
a Reflect application, select the “Load Property Editor” option from the “Property
Editor” menu. Properties that are not available in the Reflect application, to which
you are currently connected to, won’t be loaded.

2.7. Monitor a property. After you have connected to a Reflect application,
right-click on the designated property within the Component Browser and choose
the “Monitor this property” option. A new Property Monitor view will be opened.

2.8. Save collected data. You are asked to save collected Data if you ei-
ther close the corresponding property monitor or or disconnect from the Reflect
Application.

2. USE CASES 15

2.9. Disconnect. Select the “Disconnect” option from the host menu.

CHAPTER 3

Architecture of the Remote Control Center

1. General Overview

1.1. Description of the Java Packages. The Remote Control Center is
based on Eclipse RCP technology and subdivided into several packages. 3.1 shows
the most important ones. In the following a more or less detailed description of the
different parts is given.

• de.lmu.ifi.pst.reflect.remote.control.center

Contains the Activator class and RCP specific classes for creating the
workbench and menu.

• de.lmu.ifi.pst.reflect.remote.control.center.actions

Contains actions that can be triggered by the users by using the Graphical
User Interface.

• de.lmu.ifi.pst.Reflect.remote.control.center.component.browser

Logic and rendering of the component browser
• de.lmu.ifi.pst.reflect.remote.control.center.controller

GUI and Remote Controller
• de.lmu.ifi.pst.reflect.remote.control.center.dialogs Non-standard

dialogs can be found here. At the moment only the dialog for connecting
to a Reflect application exists.

• de.lmu.ifi.pst.reflect.remote.control.center.logging

Logging functionality
• de.lmu.ifi.pst.reflect.remote.control.center.property.editor

Logic and rendering of the property editor plus loading and saving func-
tionality.

• de.lmu.ifi.pst.reflect.remote.control.center.property.monitor

Functionality for drawing plots of monitored components and collecting
and saving data.

• de.lmu.ifi.pst.reflect.remote.control.center.remote.listener

Management of client side property listeners and establishing an answer
channel for the Control Center.

• de.lmu.ifi.pst.reflect.remote.control.center.splashHandlers

Display of the splash screen, was created during the branding process.
• de.lmu.ifi.pst.reflect.remote.control.center.views

Views for Component Browser, Property Editor and Monitor

17

18 3. ARCHITECTURE OF THE REMOTE CONTROL CENTER

Figure 3.1. Overview of important packages

1.2. Overview of the Software modules. 3.2 gives an overview the com-
ponents of which the remote control center exists: The connection to the running
REFLECT application, which should be accessed remotely, is handled by the Re-
mote Controller. Component Browser, Property Editor and Property Monitor show

1. GENERAL OVERVIEW 19

Figure 3.2. Overview of software modules

a different behavior and appearance, depending on if a connection has been estab-
lished or not. The Component Browser e.g. presents available components and
properties, if the user has established a connection and a simple “Not connected”
message otherwise. Therefore the mentioned components get notified about changes
of the connection status. This is achieved by using the Event Listener/Observer
Pattern. Parts like the Component Browser or Monitor are registering themselves
as listener at the Remote Controller and from then on receive messages whenever
the connection status changes. For this reason they implement the “IRemoteCon-
trollerListener” interface. The GUIController can globally be accessed, manages
interactions between the different parts of the graphical user interface and offers
methods for changing the state of different parts, which are often used by actions
invoked by the user.
The Component Browser can be used to navigate through the components and
properties of a running REFLECT application and select properties to be moni-
tored or edited.

20 3. ARCHITECTURE OF THE REMOTE CONTROL CENTER

The Property Editor offers the possibility to edit Modifiable Properties of running
components.
The Property Monitor can be used to plot data of selected Properties and save the
collected data into an XML file afterwards.

2. Detailed description of the software components

2.1. Controllers. Both the Remote Controller and the GUI Controller have
to be accessed by many classes and components of the software. Both controllers
are assumed to behave exactly the same way for every class which uses it. Because
of the previously mentioned reasons the Singleton Pattern was chosen for the im-
plementation for both the Remote and GUI Controller.
This assures that only one instance of both controllers can be accessed by other
classes. The initialization is not lazy but takes place within the Activator class of
the application, as both Controllers have to be initialized anyhow.

2.1.1. Remote Controller. The Remote Controller is a essential part of the Re-
mote Control Center. At first it offers functions for safely connecting to and discon-
necting from a REFLECT application using R-OSGi. On the other hand it offers
several functions for communicating with and retrieving information from the RE-
FLECT application, to which the Control Center is currently connected to. When
a connection is established, the Remote Controller notifies all interested views(e.g.
Component Browser) about the established connection. When a connection er-
ror has occurred or the user has disconnected from the REFLECT application, a
method is invoked in an analogous way.

2.1.2. GUIController. The GUI Controller also plays an important role within
the Remote Control Center. It offers methods for getting input from the user, e.g.
prompting him which file to load, and for interaction between different views.
For this reason the different views (Property Editor, ComponentBrowser . . .) reg-
ister themselves when starting up at the GUI Controller. This has several benefits:
On the one hand , coupling is reduced, as no view has to be connected to every
other view but only has to be registered once at the GUI Controller. On the other
hand, convenience methods for adding properties to the Property Editor or Monitor
without the need to use the RCP view registry. Finally the GUI Controller offers
methods which are useful for every view, e.g. for refreshing and repainting it.

2.2. Component Browser. The Component Browser can be used to navi-
gate through available components and properties and edit properties to be moni-
tored or edited ,if they are modifiable. It listens on the Remote Controller in order
to change it’s outline corresponding to the actual connection status.

2.3. Property Editor. The Property Editor can be used to edit modifiable
Properties. It’s initialized when the Control Center starts and resides within the
Property Editor View. The Property Editor can be saved to and restored from
an previously saved XML file, so that composition of modifiable properties can be
kept. The created XML looks like the following:

<PropertyEditor>

<PropertyEntry>

<ComponentName>

ComponentOne

</ComponentName>

<PropertyName>

ExampleProp

</PropertyName>

</PropertyEntry>

2. DETAILED DESCRIPTION OF THE SOFTWARE COMPONENTS 21

<PropertyEntry>

<ComponentName>

ComponentTwo

</ComponentName>

<PropertyName>

ExamplePropTwo

</PropertyName>

</PropertyEntry>

</PropertyEditor>

Figure 3.3. Property Monitor class diagram

2.4. Property Monitor. The Property Monitor is instantiated within the
Property Monitor View. Whenever the user wants to monitor a certain property,
a new instance of the view is created. The plotting of the view is done using
the JFreeChart library. [Lim09]. 3.3 shows the basic architecture of the Property
Monitor. The PlotUpdater checks for new data in regular intervals and updates the
monitoring graph (represented by the class XYLineChart). The Property Monitor
also makes use of a class called DataCollector. Its purpose is to fetch actual data
from the remote application , store it and also to provide the PlotUpdater Thread
with the latest data. Finally when the user closes a Property Monitor or the
connection is lost, the user is prompted to save the data collected by the Property
Monitor to an XML file. The created XML looks like the following:

<CollectedData>

<PropertyName>

MonitoredProperty

</PropertyName>

<TimeStamp>

1234567

</Timestamp>

<Value>

12.4

</Value>

<TimeStamp>

123456789

</Timestamp>

<Value>

5.4

22 3. ARCHITECTURE OF THE REMOTE CONTROL CENTER

</Value>

</CollectedData>

2.5. The Control Service. The Control Service is an OSGi bundle which has
to be started with every REFLECT application that should be accessed remotely
by the REFLECT Remote Control Center. It makes use of R-OSGi in order to
be accessible from a remote host. The Control Service offers several functionalities
which are mandatory for the Remote Control Center, e.g. methods for getting
the names of the actually running components and their properties or for setting
modifiable properties.
To achieve this functionality the Control Service accesses the REFLECT Manager
via the OSGi Service Registry. The Control Service serves as a facade to the
REFLECT application.

2.6. The Reply Service. The Reply Service is necessary for establishing
property listeners across different systems. This is achieved by dynamic proxy
creation for the corresponding listener.

3. Connecting to a REFLECT application

3.1. Accessing REFLECT Applications using R-OSGi. Being able to
access REFLECT applications remotely in order to retrieve information about its
current state or set parameters is one of the most essential features for the Remote
Control Center. As already mentioned in the introduction, R-OSGi was chosen to
perform this task. Within this chapter i want to outline some topics that were
important when implementing the Remote Control Center. The establishment of
a connection can be divided into two parts: The actions that take place on client
side referring the GUI and what happens to access the REFLECT application using
R-OSGi where two different system are involved.

3.2. Basic overview of the connection process. 3.4 shows the simplified
sequence of actions when connecting to a REFLECT application.

(1) The Connection to the Control Service is established using R-OSGi. There-
fore the Control Service has to be running as an OSGi Bundle on the same
system and within the same Virtual Machine, where the REFLECT Appli-
cation resides. R-OSGi offers an abstraction from the underlying TCP/IP
protocol, so once the connection has been established, the Control Service
can be accessed by dynamic proxy creation.

(2) From this point, the Control Service tries to access the REFLECT Man-
ager. The REFLECT Manager is also available as an OSGi-Bundle and
can be fetched using the OSGi Registry. The Manager serves as an inter-
face to the REFLECT application.

(3) The REFLECT Manager is able to access all running components of the
running REFLECT Applications. It performs the designated actions (e.g.
setting or retrieving values) and returns the result ,if necessary.

3.3. Making a connection request from client side view. The estab-
lishment of a connection can be invoked by the user by either using the “Connect”
option from the “Host” menu or by right-clicking on the “Not connected” node
within the Component Browser and choosing the “Connect” option.
3.5 shows the simplified sequence of actions on client side invoked when a connec-
tion request is invoked.
At first it is checked, if it’s possible to connect to the specified host and port,
which have previously been set by the user using a dialog window. The following

3. CONNECTING TO A REFLECT APPLICATION 23

Control ServiceControl Center

Reflect Application

Reflect Manager

OSGi

Reflect

1

2

3

Client Reflect Application

Figure 3.4. The basic connection process

requirements have to be fulfilled in order to connect to a REFLECT application
successfully:

• The IP which was given as host has to be reachable.
• A Control Service bundle was loaded with the REFLECT application to

which the connection request is
• R-OSGi has successfully been started at the remote host
• The REFLECT manager as part of the REFLECT framework can be

accessed by the OSGi Service Registry on application side

If the connection can’t be established, an error message is displayed using the
GUIController. Otherwise the fireConnected() method is invoked and all reg-
istered Remote Listeners are notified. An example for an Remote Listener is the
Component Browser View. When it is notified, it initializes the Component Browser
and uses the Remote Controller to fetch information about the components to be
displayed.
What is not shown within this sequence diagram? The menu items for connecting
and disconnecting are also registered as listeners and are toggled according to the
given connection status.

3.4. An example: Setting a component property. 3.6 shows the pro-
gram flow of setting the value of specific component property. On client side the
sequence is initiated by the Remote Controller. At first it tries to fetch the Con-
trolService described by a ServiceReference, which has been initialized when the
connection to this REFLECT application was established. The following actions
all take place on server side (indicated by the green box). The Control Service tries
to fetch the REFLECT Manager using OSGi, as the manager itself is running as
an OSGi bundle. The property is then set using the REFLECT Manager.

24 3. ARCHITECTURE OF THE REMOTE CONTROL CENTER

3.5. Remote Property Listeners. Remote Property Listeners are impor-
tant for the Control Center as they are used by both the Property Monitor for
getting notified about changed data and the Property Editor for getting notified
about changed Property Domains. The current version of the REFLECT frame-
work already offers the possibility to register local Property Listeners , which is
used to coordinate dependencies between different components. The Remote Con-
trol Center offers the possibility to register Remote Property Listeners, which makes
use of the ServerRemoteListenerManager, which handles the local Property Listen-
ers on REFLECT application side and the ClientRemoteListenerManager, which
handles the remote listeners on the side of the Remote Control Center. When a
Remote Property Listener is registered by the Remote Control Center, the Server-
RemoteListenerManager adds a new local Property Listener on REFLECT applica-
tion side and saves the connection to the accordant Remote Control Center, while
the ClientRemoteListenerManager handles the connection to the according com-
ponent of the Control Center (e.g. a PropetyMonitor). 3.7 gives an overview of
what happens when a property’s domain or values changes. At first, the ServerRe-
moteListenerManager, which is part of the Control Service, is notified and checks,
if ServerRemoteListeners, which represent clients from different hosts, have been
registered and are listening at this specific property. The previous registration has
taken place using the Control Service. If no listeners for this property are present,
the ServerRemoteListenerManager removes itself (as a listener) from the property
that has send the update message. If there are listeners present, they get notified
using R-OSGi and the ReplyService available on client side. The ReplyService del-
egates the message to the ClientRemoteListenerManager, which serves as a proxy
and checks if listeners for specified component and property are present and if so ,
notifies them. If there isn’t any listeners, it tells the ServerRemoteListenerManager
to remove this client from its listener list.
Using this approach, unnecessary listener connections are removed the first time
they are detected , as both Server- and ClientRemoteListenerManager check if there
are any listeners at all for which the received update message is of relevance.

3. CONNECTING TO A REFLECT APPLICATION 25

:Remote Controller :ComponentBrowserView

initialize
Connection

connection=check
if connection available

fireConnected

RemoteListenerConnected() activate
ComponentBrowser()

:GUI Controller

[connection] :

show
ConnectionError()

showErrorMessage()

getComponents()

displayComponents()

[!connection] :

User

Figure 3.5. Clientside sequence diagram of a connection request
on client side

26 3. ARCHITECTURE OF THE REMOTE CONTROL CENTER

:Remote Controller

:Control Service
service=
getRemoteService

service.setParam

:ReflectManager

manager=

getReflectManager

manager.setParam

:AComponent

component=
getComponent

component.
setProperty

Figure 3.6. Set a property remotely using R-OSGi

3. CONNECTING TO A REFLECT APPLICATION 27

Figure 3.7. Remote listener functionality

CHAPTER 4

Adding Property domain functionality to the
REFLECT Framework

1. Property Domains

While developing of the REFLECT Remote Control Center, several new pos-
sibilities for creating Property domains were introduced.
Domains can now be associated with specific properties within the component class
by using Java Annotations.
Property Domains are important for the Remote Control Center, as they are trans-
ferred to the Control Center with every property which should be edited. When
the users edits a property and chooses to commit his changes, the designated value
is at first validated against the property domain on client side. If the values isn’t
valid, an error message is shown and the value won’t be set within the REFLECT
application. If the values from the Control Center would be passed unchecked, an
exception on server side would be thrown and the client would be notified that an
error has occurred while trying to set the property. By validating the value already
on client side, this exception and the resulting network traffic can be prevented.
Property Domains are also needed for choosing the appropiate input method for a
specific property within the Property Editor. This would be a slider for a RangeDo-
main or a Combo Box for a CollectionDomain. One example application would be a
sensor component with two properties. One could determine which kind of camera
should be used for this sensor, if there is more than one available. This would be
represented best by a CollectionDomain. Another property of the sensor compo-
nent could be the sensitivity of the sensor, for which only values within a certain
range make sense, so that this property would be restricted by a RangeDomain.

2. RangeDomains

@Property domain="[12.6,20.8["

would associate a RangeDomain with lower bound 12.6, upper bound 20.80 ,lower
included and upper bound excluded to the annotated domain. The type of the
resulting domain depends on the type of the property, currently Integer and Double
are supported for Range Domains.
You can also use inf to set the minimum (maximum) of the corresponding data
type, e.g.

@Property domain="]inf,inf]"

public void setProp(int new_val){ ...

would result in a Range Domain of type Integer, which lower bound is the minimum
Integer value and the maximum Integer value as its upper bound, where the lower
bound is excluded while the upper bound is included.

3. CollectionDomain

A Collection Domain is primarily intended to give options between several fixed
possible settings.

29

30 4. ADDING PROPERTY DOMAIN FUNCTIONALITY TO THE REFLECT FRAMEWORK

@Property domain="{Option1,Option2,Option3}"

would result in a Collection Domain with the Elements Option1,Option2 and Op-
tion3. Please Note that CollectionDomains, that contain characters, are only valid
for Properties of type String.
Other supported data types for Collection Domains are Integer and Double.

4. Dynamic Property Domains

An alternative way to associate property Domains to specific properties is not
to annotate the property itself but to declare a method within this class as an
Dynamic Property Domain. This way the Domain for a property can change at an
any time corresponding to the class’es internal state or other parameters that may
influence the range of allowed values for a property. An example:

private double fInternalValue;

.

.

.

@Property

public double getDoubleVal(){

return fDoubleVal;

}

@Property

public void setDoubleVal(double val){

fDoubleVal=val;

}

@DynamicPropertyDomain(value="doubleVal")

public IPropertyDomain getPropertyDomain(){

return new RangeDomain<Double>(fInternalValue, 20.53, Double.class, false,

true);

}

The above example would result in RangeDomain which lower bound is dynami-
cally fetched from the attribute “fInternalValue” of this component. Note:
As a component programmer you have to make sure to call a components’s updatedProperty
method to make sure that all property listeners are noticed about the changed do-
main.

5. Full Domains

If no domain description is given for a property, a FullRange Domain will
automatically be associated to this property. A FullRange Domain contains every
possible element which is of the corresponding type.

CHAPTER 5

Future prospects

Within this chapter I want to outline some ideas about how the Control Center
could be extended or improved.

1. Improving existent functionality

1.1. Improving the Property Monitor functionality. A reasonable way
for adding functionality to the existent Remote Control Center would be to ex-
tend the Property Monitor. At the moment, the Property Monitor can only
be used to monitor properties of type Integer or Double. In both cases the
JFreeChart [Lim09] was used. The library seemed to be a good choice referring to
the integration into an RCP architecture, but it has its limitation when it comes
to live rendering of data. One idea for improving the Property Monitor would be
to use a different charting framework which is more optimized for live plotting and
maybe even offers the possibility to select certain areas of the plot in order to save
only a part of the collected data.
Another idea for improving the current version is surely to introduce the possibility
to monitor various data type. One example would be the type String, it could
be simply monitored by printing its current value into a not-changeable text field.
The collected data could be saved in a similar way to how it’s done for Double or
Integer.
Maybe the best and most generic way would be to use RCP’s extension function-
ality to add plugins for monitoring specific types. By this way, new features could
easily be added to the existing architecture.

1.2. Upgrading the connection handling for Reflect App. In order to
access the Reflect application remotely, R-OSGi [Rel09] was used for the im-
plementation of the Remote Control Center. In the meantime R-OSGi has been
enhanced so that its services can now be accessed as Web Services and the newer
version claims to be more stable. A reimplementation of the Control Center could
benefit from the new possibilities. Another idea would be to implement a “Reflect
Discovery” feature in order to scan for Reflect application within a given network
for being able to access the systems without knowing the machine’s IP addresses.

2. Ideas for extending the Control Center

2.1. Listening on ports of components. A convenient feature for future
version would be the ability to monitor data which is transferred between different
components using the Reflect ports. This could be done similar to the way prop-
erties are monitored but also the introduction of new elements for the GUI could
make sense.

2.2. Dynamic instantiation of components. It would be useful feature
if components with corresponding properties could be created using the GUI of
the Remote Control Center while the Reflect application is running. This would
offer the possibility to adapt the behavior of a running application in a profound

31

32 5. FUTURE PROSPECTS

way without the need for restarting it. It would also make sense being able to
connect the newly instantiated components using their associated ports. Both of
the mentioned ideas would offer a possibility for fast dynamic adaption of a running
software system or experimenting with different components.

CHAPTER 6

Conclusion

Using the Remote Control Center it’s possible to connect to REFLECT sys-
tems and monitor and edit properties of components on the fly. To establish the
connection to the REFLECT system, r-OSGi is used. The Remote Control Center
GUI has been built on the Eclipse Rich Client Platform. It can be extended by
using Eclipse’s plugin functionality.

33

Bibliography

[All09] The OSGI Alliance. About / osgi technology. http://www.osgi.org/About/Technology,
2009.

[eli09] elipse.org. Swt: The standard widget toolkit. http://www.eclipse.org/swt/, 2009.

[eW09] eclipse Wiki. Rich client platform. http://wiki.eclipse.org/index.php/Rich Client Platform,
2009.

[Lim09] Object Refinery Limited. Jfreechart. http://www.jfree.org/jfreechart/, 2009.

[Rel09] Jan S. Rellermeyer. Maven - r-osgi - transparent osgi remote extension for distributed
services. http://r-osgi.sourceforge.net/, 2009.

35

